Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(y'=4x^3+12mx^2+6\left(m+1\right)x\)
ta giải pt \(4x^3+12mx^2+6\left(m+1\right)x=0\Leftrightarrow x\left(4x^2+12mx+6m+6\right)=0\)
suy ra \(\begin{cases}x=0\\4x^2+12mx+6m+6=0\end{cases}\)
ta tính \(y''=12x^2+24mx+6m+6\)
để hàm số có cực đâị mà ko có cực tiểu thì y''(0)<0 với mọi x
giải pt suy ra đc điều kiện của m
Đáp án C
Phương trình có ba nghiệm phân biệt nếu y c t < m < y c d ⇔ - 2 < m < 2
Đáp án B
Phương pháp:
Điều kiện để hàm đa thức bậc ba có cực đại, cực tiểu là phương trình y ' = 0 có hai nghiệm phân biệt.
Cách giải:
TH1: m = 0 → y = x − 1 Hàm số không có cực trị.
TH2: TXĐ: D = R
Ta có: y = m x 3 3 − m x 2 + x − 1 ⇒ y ' = m x 2 − 2 m x + 1
Để hàm số cho có cực đại, cực tiểu thì phương trình y ' = 0 phải có 2 nghiệm phân biệt Δ ' = m 2 − m > 0 ⇔ m < 0 m > 1
Cho tam giác ABC đều
D thuộc AB , E thuộc AC sao cho BD = AE
CM : Khi D,E thay đổi ( di chuyển ) trên AB,AC thì đường trung tuyến DE luôn đi qua điểm cố định
Help me !!!
Đáp án C
Có y ' = − 6 x 2 + 6 m x ; y ' = 0 ⇔ x = 0 x = m .
Hàm số đạt cực tiểu tại x = 0 ⇔ m < 0 .
y ' = x 2 - 2 m x + m 2 - 1
Dễ thấy rằng hàm số có hai điểm cực trị x = m + 1; x = m - 1 với mọi m
Ta có:
y C D + y C T > 2 ⇔ y m + 1 + y m - 1 > 2 ⇔ 2 m 3 - 2 m + 2 > 2 ⇔ - 1 < m < 0 m > 1
Đáp án A