\(y=3-2\left|\sin x\right|\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

4 tháng 4 2017

a) Cách 1: Ta có:

y' = 6sin5x.cosx - 6cos5x.sinx + 6sinx.cos3x - 6sin3x.cosx = 6sin3x.cosx(sin2x - 1) + 6sinx.cos3x(1 - cos2x) = - 6sin3x.cos3x + 6sin3x.cos3x = 0.

Vậy y' = 0 với mọi x, tức là y' không phụ thuộc vào x.

Cách 2:

y = sin6x + cos6x + 3sin2x.cos2x(sin2x + cos2x) = sin6x + 3sin4x.cos2x + 3sin2x.cos4x + cos6x = (sin2x + cos2x)3 = 1

Do đó, y' = 0.

b) Cách 1:

Áp dụng công thức tính đạo hàm của hàm số hợp

(cos2u)' = 2cosu(-sinu).u' = -u'.sin2u

Ta được

y' =[sin - sin] + [sin - sin] - 2sin2x = 2cos.sin(-2x) + 2cos.sin(-2x) - 2sin2x = sin2x + sin2x - 2sin2x = 0,

vì cos = cos = .

Vậy y' = 0 với mọi x, do đó y' không phụ thuộc vào x.

Cách 2: vì côsin của hai cung bù nhau thì đối nhau cho nên

cos2 = cos2 '

cos2 = cos2 .

Do đó

y = 2 cos2 + 2cos2 - 2sin2x = 1 +cos + 1 +cos - (1 - cos2x) = 1 +cos + cos + cos2x = 1 + 2cos.cos(-2x) + cos2x = 1 + 2cos2x + cos2x = 1.

Do đó y' = 0.


 

22 tháng 5 2017

a) TXĐ: \(D=R\backslash\left\{0\right\}\) tự đối xứng.
\(y\left(-x\right)=\dfrac{cos\left(-2x\right)}{-x}=-\dfrac{cos2x}{x}=-y\left(x\right)\).
Vậy \(y\left(x\right)\) là hàm số lẻ.
b) TXĐ: \(D=R\) tự đối xứng.
\(y\left(-x\right)=\left(-x\right)-sin\left(-x\right)=-x+sinx=-y\left(x\right)\).
Vậy \(y\left(x\right)\) là hàm số lẻ.
c) TXĐ: \(D=R\) tự đối xứng.
\(y\left(-x\right)=\sqrt{1-cos\left(-x\right)}=\sqrt{1-cosx}=y\left(x\right)\).
Vậy \(y\left(x\right)\) là hàm số chẵn.
d) TXĐ: \(D=R\) tự đối xứng.
\(y\left(x\right)=1+cos\left(-x\right)sin\left(\dfrac{3\pi}{2}+2x\right)\)
\(=1+cosxsin\left(2\pi-\left(\dfrac{3\pi}{2}+2x\right)\right)\)
\(=1+cosx.sin\left(\dfrac{\pi}{2}-2x\right)\)
\(=1+cosx.\left[-sin\left(\pi+\dfrac{\pi}{2}-2x\right)\right]\)
\(=1-cosx.sin\left(\dfrac{3\pi}{2}-2x\right)\)
Vậy \(y\left(x\right)\) không là hàm số lẻ cũng không là hàm số chẵn.

3 tháng 4 2017

a) Ta có:

−1≤cosx≤1,∀x∈R⇔0≤1+cosx≤2⇔0≤2(1+cosx)≤4⇔1≤√2(1+cosx+1≤3−1≤cos⁡x≤1,∀x∈R⇔0≤1+cos⁡x≤2⇔0≤2(1+cos⁡x)≤4⇔1≤2(1+cos⁡x+1≤3

Vậy y ≤ 3, ∀ x ∈ R

Dấu “ = “ xảy ra ⇔ cos x = 1 ⇔ x = k2π (k ∈ Z)

Vậy ymax = 3 khi x = k2π

b) Ta có:

Với mọi x ∈ R, ta có:

sin(x−π6)≤1⇔3sin(x−π6)≤3⇔3sin(x−π6)−2≤1⇔y≤1sin⁡(x−π6)≤1⇔3sin⁡(x−π6)≤3⇔3sin⁡(x−π6)−2≤1⇔y≤1

Vậy ymax = 1 khi sin(x−π6)=1⇔x=2π3+k2π,k∈Z


31 tháng 8 2016

a)y=2cos(x+π/3)

-1<=cos(x+π/3)<=1

<=>-2<=2cos(x+π/3)<=2

--->min=-2,max=2

31 tháng 8 2016

không có điều kiện hả bạn ?

a: \(-1< =cosx< =1\)

\(\Leftrightarrow-2< =2cosx< =2\)

\(\Leftrightarrow-5< =2cosx-3< =-1\)

\(f\left(x\right)_{min}=-5\) khi cos x=-1

hay \(x=\Pi+k2\Pi\)

\(f\left(x\right)_{max}=-1\) khi cos x=1

hay \(x=k2\Pi\)

b: \(-1< =sinx< =1\)

\(\Leftrightarrow-2< =2sinx< =2\)

\(\Leftrightarrow5< =2sinx+7< =9\)

\(\Leftrightarrow\sqrt{5}< =\sqrt{2sinx+7}< =3\)

\(\Leftrightarrow3\sqrt{5}< =3\sqrt{2sinx+7}< =9\)

\(f\left(x\right)_{min}=3\sqrt{5}\) khi sin x=-1

hay \(x=-\dfrac{\Pi}{2}+k2\Pi\)

\(f\left(x\right)_{max}=9\) khi sin x=1

hay \(x=\dfrac{\Pi}{2}+k2\Pi\)

 

12 tháng 7 2018

đề bài là: tìm tập xác định ạ