Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= x2-2x = ( x2-2x + 1 ) - 1 = -1 (x-1)2 . Vì (x-1)2 lớn hơn hoặc bằng 0 ==> Min A = 1. Khi x = 1
B = -( x2- 4x + 4 +1) = -1-(x-2)2 < -1 ==> Max B = - 1 khi x = 2
Phân tích đa thức x4 + 6x3+11x2+6x = x(x+1)(x+2)(x+3) thành nhân tử tích của 4 số tự nhiên liên tiếp chia hết cho 24
4x2-4x+5=4x2-4x+1+4=[2x-1]2+4> hoac =4
Để C có giá trị lớn nhất
=>[2x-1]2+4 có giá trị nhỏ nhất
=>[2x-1]2+4 có giá trị nhỏ nhất = 4
C có giá trị lớn nhất là3/4
Vay...
\(B=-3x^2+x+1\)
\(B=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)
\(B=-3\left[\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}\right)-\dfrac{13}{36}\right]\)
\(B=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\)\(\le\dfrac{13}{12}\forall x\)
\(B=\dfrac{13}{12}\Leftrightarrow-3\left(x-\dfrac{1}{6}\right)^2=0\Leftrightarrow x=\dfrac{1}{6}\)
Vậy Max B = 13/12 <=> x = 1/6
M = 12 - (3x^2+6x+3) = 12 - 3.(x+1)^2 <= 12
Dấu "=" xảy ra <=> x+1 = 0 <=> x = -1
Vậy GTLN của M = 12 <=> x = -1
k mk nha
\(M=-3x^2-6x+9\)
\(=\left(-3x^2-6x-3\right)+12\)
\(=12-3\left(x^2+2x+1\right)\)
\(=12-\left(x+1\right)^2\)
Do \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow M\le12\)
Dấu = xảy ra khi \(\left(x+1\right)^2=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
Vậy \(M_{Max}=12\Leftrightarrow x=-1\)
\(ax^2+a=3-4x\Leftrightarrow ax^2+4x+a-3=0\left(1\right)\)
tìm tiềm kiện để (1) có nghiệm
a=0=>có nghiệm x=3/4 với a khác không
\(2^2-a\left(a-3\right)\ge0\)
\(\Leftrightarrow a^2-3a-4\le0\)\(\Rightarrow-1\le a\le4\)
GTLN A=\(4\)
A=(3-4x)/(x^2+1)
ta có 4-A=4-(3-4x)/(x^2+1)
=[4(x^2+1)-3+4x]/(x^2+1)
=(4x^2+4-3+4x)/(x^2+1)=(4x^2+4x+1)/(x^2+1)
=(2x+1)^2/(x^2+1) >= 0 với mọi x
=>A=4-(2x+1)^2/(x^2+1) <= 4 với mọi x
Vậy maxA=4 ,dấu "=" xảy ra khi x=-1/2