K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Hai biểu thức này chỉ có min thui bạn nhé.

1.

\(N=\frac{2x+5}{\sqrt{x}+1}=\frac{2\sqrt{x}(\sqrt{x}+1)-2(\sqrt{x}+1)+7}{\sqrt{x}+1}=2\sqrt{x}-2+\frac{7}{\sqrt{x}+1}\)

\(=2(\sqrt{x}+1)+\frac{7}{\sqrt{x}+1}-4\)

\(=\frac{7}{16}(\sqrt{x}+1)+\frac{7}{\sqrt{x}+1}+\frac{25}{16}(\sqrt{x}+1)-4\)

\(\geq 2\sqrt{\frac{7}{16}.7}+\frac{25}{16}(\sqrt{9}+1)-4=\frac{23}{4}\) (theo BĐT AM-GM)

Vậy $N_{\min}=\frac{23}{4}$ khi $x=9$

 

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

2.

\(F=\frac{x+3}{\sqrt{x}+1}=\frac{\sqrt{x}(\sqrt{x}+1)-(\sqrt{x}+1)+4}{\sqrt{x}+1}=\sqrt{x}-1+\frac{4}{\sqrt{x}+1}\)

\(=\frac{4}{9}(\sqrt{x}+1)+\frac{4}{\sqrt{x}+1}+\frac{5\sqrt{x}}{9}-\frac{13}{9}\)

\(\geq 2\sqrt{\frac{4}{9}.4}+\frac{5\sqrt{4}}{9}-\frac{13}{9}=\frac{7}{3}\)

Vậy $F_{\min}=\frac{7}{3}$ khi $x=4$

 

 

19 tháng 3 2021

a/ \(P=12\)

b/ \(Q=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c/ Ta có:

\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Dấu = xảy ra khi x = 3 (thỏa tất cả các điều kiện )

19 tháng 3 2021

a. Thay x = 3 vào biểu thức P ta được :

\(p=\frac{x+3}{\sqrt{x}-2}=\frac{9+3}{\sqrt{9}-2}=12\)

b, \(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)

c, Ta có :

\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)

Vậy GTNN \(\frac{P}{Q}=2\sqrt{3}\) khi và chỉ khi \(x=3\)

27 tháng 11 2018

\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(Q=x+1\)

Không thể tìm được GTLN hay GTNN của Q.

b)

   \(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)

Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)

Vậy x=1, x=9 là các giá trị cần tìm

Bài 3: 

a: \(A=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{x-25}\)

\(=\dfrac{x-10\sqrt{x}+25}{x-25}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)

b: \(B=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}=\dfrac{3}{\sqrt{x}+3}\)

2 tháng 3 2019

a , với \(x=\dfrac{9}{4}\Rightarrow\sqrt{x}=\dfrac{3}{2}=1,5\)

\(A=\dfrac{1,5+1}{1,5-1}=\dfrac{2,5}{0,5}=5\)

b , \(B=\left(\dfrac{\sqrt{x}+1}{x-1}+\dfrac{\sqrt{x}}{x-1}\right).\dfrac{x-\sqrt{x}}{2\sqrt{x}+1}\)

\(=\left(\dfrac{\sqrt{x}+1+\sqrt{x}}{x-1}\right).\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}+1}{x-1}.\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{x-1}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

2 tháng 3 2019

mơn bạn nhìu

7 tháng 10 2017

trả lời giúp mk đi mà chiều nộp bài rùi huhu

4 tháng 8 2018

a) điều kiện : \(x\ge0;x\ne1\)

ta có : \(Q=\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)

\(\Leftrightarrow Q=\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)

\(\Leftrightarrow Q=\dfrac{x+2+\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(\Leftrightarrow Q=\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)\(\Leftrightarrow Q=\dfrac{\left(\sqrt{x}\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)

b) thế \(x=9\) vào \(Q\) ta có : \(Q=\dfrac{\sqrt{9}}{9+\sqrt{9}+1}=\dfrac{3}{13}\)

c) ta có : \(Q=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\Leftrightarrow\sqrt{x}=Q\left(x+\sqrt{x}+1\right)\)

\(\Leftrightarrow Qx+\left(Q-1\right)\sqrt{x}+Q=0\)

vì phương trình này luôn có nghiệm \(\Rightarrow\Delta\ge0\)

\(\Rightarrow\left(Q-1\right)^2-4Q^2\ge0\Leftrightarrow Q^2-2Q+1-4Q^2\ge0\)

\(\Leftrightarrow\left(Q+1\right)\left(1-3Q\right)\ge0\) \(\Leftrightarrow-1\le Q\le\dfrac{1}{3}\)

\(\Rightarrow Q_{max}=\dfrac{1}{3}\) dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{1-Q}{2Q}=\dfrac{1-\dfrac{1}{3}}{\dfrac{2}{3}}=1\Leftrightarrow x=1\)

\(\Rightarrow Q_{min}=-1\) dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{1-Q}{2Q}=\dfrac{1+1}{-2}=-1\left(loại\right)\)

nhận xét : ta thấy \(Q=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\ge0\)

\(\Rightarrow Q_{min}=0\) dấu "=" xảy ra khi \(\sqrt{x}=0\Leftrightarrow x=0\)

vậy \(Q_{min}=0\) khi \(x=0\) ; \(Q_{max}=\dfrac{1}{3}\) khi \(x=1\)

Ê ông ơi . Ban đầu là điều kiện \(x\ne1\) rồi mà sao câu c khi \(x=1\)

được hả ?

27 tháng 5 2017

Ôn tập Căn bậc hai. Căn bậc ba