Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = -2(x2 -3x -2)= -2( x2 - 2.3x/2 + 9/4 -9/4 -2)
= -2(x-3/2)2 + 8,5
GTLN: B = 8,5
Uầy! Mong sao là đúng cho anh em chép chung, chứ sai thì cả lũ... thôi rồi lượm ơi!!!
Đau lòng, đau lòng thằng đệ cÒng!
\(4-x^2+6x=-\text{[}x^2-2\cdot x\cdot3+3^2-15\text{]}\)
\(=-\left[x-3\right]^2+15\)
\(-\left[x-3\right]^2\le0\)
\(\Rightarrow-\left[x-3\right]^2+15\le15\)
=> \(GTLN-\left[x-3\right]^2+15=15\)khi x = 3
4-x^2+6x=-(x^2-6x-4)
=-(x^2-2x3+3^2)+13
=-(x-3)^2+13
vì -(x-3)^2\(\le\)0
\(\rightarrow\)GTLN của biểu thức trên bằng 13 tại x=3
Ta có: x2 + 13x + 2012 = \(\frac{2×13}{2}x+x^2+\frac{169}{4}+\frac{7849}{4}=\left(x+\frac{13}{2}\right)^2+\frac{7849}{4}\)
\(\ge\frac{7849}{4}\)
Đạt GTNN khi x = \(\frac{-13}{2}\)
M = 12 - (3x^2+6x+3) = 12 - 3.(x+1)^2 <= 12
Dấu "=" xảy ra <=> x+1 = 0 <=> x = -1
Vậy GTLN của M = 12 <=> x = -1
k mk nha
\(M=-3x^2-6x+9\)
\(=\left(-3x^2-6x-3\right)+12\)
\(=12-3\left(x^2+2x+1\right)\)
\(=12-\left(x+1\right)^2\)
Do \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow M\le12\)
Dấu = xảy ra khi \(\left(x+1\right)^2=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
Vậy \(M_{Max}=12\Leftrightarrow x=-1\)