Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f'\left(x\right)=\left(sin^2x\right)'+4\cdot\left(sinx'\right)-5'\)
\(=2\cdot sinx\cdot cosx+4\cdot cosx=2cosx\left(sinx+2\right)\)
\(f'\left(x\right)=0\)
=>\(cosx\left(sinx+2\right)=0\)
=>\(cosx=0\)
=>\(x=\dfrac{\Omega}{2}+k\Omega\)
mà \(x\in\left[0;\dfrac{\Omega}{2}\right]\)
nên \(x=\dfrac{\Omega}{2}\)
\(f\left(\dfrac{\Omega}{2}\right)=sin^2\left(\dfrac{\Omega}{2}\right)+4\cdot sin\left(\dfrac{\Omega}{2}\right)-5\)
=1+4-5=0
\(f\left(0\right)=sin^20+4\cdot sin0-5=-5\)
=>Chọn D
Đặt \(sin^24x=t\left(t\in\left[0;1\right]\right)\)
\(y=1-8sin^22x.cos^22x+2sin^42x\)
\(=1-2sin^24x+2sin^42x\)
\(\Rightarrow y=f\left(t\right)=1-2t+2t^2\)
\(y_{min}=min\left\{f\left(0\right);f\left(1\right);f\left(\dfrac{1}{2}\right)\right\}=\dfrac{1}{2}\)
\(y_{max}=max\left\{f\left(0\right);f\left(1\right);f\left(\dfrac{1}{2}\right)\right\}=1\)
Đặt \(sinx=t\in\left[-1;1\right]\)
\(y=f\left(t\right)=t^2+2t\)
Xét hàm \(y=f\left(t\right)=t^2+2t\) trên \(\left[-1;1\right]\)
\(-\dfrac{b}{2a}=-1\in\left[-1;1\right]\)
\(f\left(-1\right)=-1\) ; \(f\left(1\right)=3\)
\(\Rightarrow y_{min}=-1\) khi \(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)
\(y_{max}=3\) khi \(sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)
a: \(0< =cos^23x< =1\)
=>\(9< =cos^23x+9< =10\)
=>9<=y<=10
\(y_{min}=9\) khi \(cos^23x=0\)
=>\(cos3x=0\)
=>3x=pi/2+kpi
=>x=pi/6+kpi/3
\(y_{max}=10\) khi \(cos^23x=0\)
=>\(sin^23x=0\)
=>3x=kpi
=>x=kpi/3
b: \(0< =sin^2x< =1\)
=>\(-3< =y< =-2\)
\(y_{min}=-3\) khi \(sin^2x=0\)
=>x=kpi
\(y_{max}=-2\) khi \(sin^2x=1\)
=>\(cos^2x=0\)
=>x=pi/2+kpi
c: \(0< =sin^25x< =1\)
=>12<=y<=13
y min=12 khi sin25x=0
=>sin 5x=0
=>5x=kpi
=>x=kpi/5
y max=13 khi sin25x=0
=>cos25x=0
=>cos5x=0
=>5x=pi/2+kpi
=>x=pi/10+kpi/5
Do đó giá trị nhỏ nhất và giá trị nhỏ nhất của hàm số đã cho là 4 2 - 1 và 7
Đáp án D