K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2018

28 tháng 6 2019

Đáp án D

9 tháng 3 2017

Ta có bảng biến thiên như hình vẽ sau:

Giá trị nhỏ nhất của hàm số là f( b)  nhưng giá trị lớn nhất có thể là f (a) hoặc f( e)  Theo giả thiết ta có: f(a) + f( c)) = f( b) + f( d)   nên f(a) - f( d)) = f( b) - f(  c)< 0

Suy ra : f( a) < f( d) < f( e)  

Vậy  m a x [ a ; e ]   f ( x ) = f ( e ) ;   m i n [ a ; e ]   f ( x ) = f ( b )

Chọn  C.

20 tháng 9 2019

Đáp án: A.

Ta có y(0) = -5, y(3) = -2, tọa độ đỉnh: x = -b/2a = 2

⇒ y(2) = -4 + 8 - 5 = -1; max y = max(-5; -2; -1) = -1.

Cách khác: Vì a = -1 nên parabol y = -x2 + 4x - 5 đạt cực đại tại đỉnh (2; -1). Vì vậy GTLN của hàm số trên đoạn [0;3] là y(2) = -1

26 tháng 2 2018

Đáp án: A.

Ta có y(0) = -5, y(3) = -2, tọa độ đỉnh: x = -b/2a = 2

⇒ y(2) = -4 + 8 - 5 = -1; max y = max(-5; -2; -1) = -1.

Cách khác: Vì a = -1 nên parabol y = - x 2  + 4x - 5 đạt cực đạt tại đỉnh (2; -1). Vì vậy giá trị lớn nhất của hàm số trên đoạn [0;3] là y(2) = -1.

13 tháng 11 2019

19 tháng 6 2017

y ' = 3 x 2 + 6 x - m

Để hàm số đã cho đồng biến trên R khi và chỉ khi:

y ' = 3 x 2 + 6 x - m ≥ 0 ∀ x ∈ R

⇔ Δ = 9 + 3m ≤ 0 ⇔ m ≤ -3

Vậy giá trị lớn nhất của m để hàm số đã cho đồng biến trên R là m = -3.

Chọn A.

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:

a. $y=\sqrt{x^2+x-2}\geq 0$ (tính chất cbh số học)

Vậy $y_{\min}=0$. Giá trị này đạt tại $x^2+x-2=0\Leftrightarrow x=1$ hoặc $x=-2$
b.

$y^2=6+2\sqrt{(2+x)(4-x)}\geq 6$ do $2\sqrt{(2+x)(4-x)}\geq 0$ theo tính chất căn bậc hai số học

$\Rightarrow y\geq \sqrt{6}$ (do $y$ không âm)

Vậy $y_{\min}=\sqrt{6}$ khi $x=-2$ hoặc $x=4$

$y^2=(\sqrt{2+x}+\sqrt{4-x})^2\leq (2+x+4-x)(1+1)=12$ theo BĐT Bunhiacopxky

$\Rightarrow y\leq \sqrt{12}=2\sqrt{3}$

Vậy $y_{\max}=2\sqrt{3}$ khi $2+x=4-x\Leftrightarrow x=1$

c. ĐKXĐ: $-2\leq x\leq 2$

$y^2=(x+\sqrt{4-x^2})^2\leq (x^2+4-x^2)(1+1)$ theo BĐT Bunhiacopxky

$\Leftrightarrow y^2\leq 8$

$\Leftrightarrow y\leq 2\sqrt{2}$

Vậy $y_{\max}=2\sqrt{2}$ khi $x=\sqrt{2}$

Mặt khác:

$x\geq -2$

$\sqrt{4-x^2}\geq 0$

$\Rightarrow y\geq -2$
Vậy $y_{\min}=-2$ khi $x=-2$