Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+y^2-2xy-2x+3\)
\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)
\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)
Mà \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)
Vậy Min A = 2 khi x=y=1
\(A=-2x^2-10y^2+4xy+4x+4y+2016\)
\(=-2.\left(x^2+5y^2-4xy-4x-4y\right)+2016\)
\(=-2.\left(x^2+4y^2+4-4xy-4x+8y+y^2-12y+36\right)+2.36+2016\)
\(=-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]+2088\)
Ta có: \(\left(x-2y-2\right)^2+\left(y-6\right)^2\ge0\)
\(\Rightarrow-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]\le0\)
\(\Rightarrow-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]+2088\le2088\)
\(\Rightarrow A\le2088\)
Vậy giá trị lớn nhất của \(A=2088\) khi: \(\hept{\begin{cases}x-2y-2=0\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=2y+2\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=14\\y=6\end{cases}}\)
\(D=-5\left(x^2+\dfrac{4}{5}x+\dfrac{1}{5}\right)\)
\(=-5\left(x^2+2\cdot x\cdot\dfrac{2}{5}+\dfrac{4}{25}+\dfrac{1}{25}\right)\)
\(=-5\left(x+\dfrac{2}{5}\right)^2-\dfrac{1}{5}< =-\dfrac{1}{5}\)
Dấu = xảy ra khi x=-2/5
a/ Đề sai, hệ số của \(y^2\) phải âm thì biểu thức mới tồn tại max
b/ \(B=-3x^2-9x-7=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\le-\frac{1}{4}\)
\(B_{max}=-\frac{1}{4}\) khi \(x=-\frac{3}{2}\)
c/ \(C=-\left(x^2+y^2+1-2xy-2x+2y\right)-3\left(y^2-4y+4\right)+5\)
\(C=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\)
\(C_{max}=5\) khi \(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Lời giải:
$-A=x^2-2xy+4y^2-2x-10y+3$
$=(x^2-2xy+y^2)+3y^2-2x-10y+3$
$=(x-y)^2-2(x-y)+3y^2-12y+3$
$=(x-y)^2-2(x-y)+1+3(y^2-4y+4)-10$
$=(x-y+1)^2+3(y-2)^2-10\geq 0+0-10=-10$
$\Rightarrow A\leq 10$
Vậy $A_{\max}=10$. Giá trị này đạt tại $x-y+1=y-2=0$
$\Leftrightarrow y=2; x=1$
a) \(A=2x^2+9y^2-6xy-6x-12y+2014\)
\(=\left(2x^2-6xy-6x\right)+\left(9y^2-12y\right)+2014\)
\(=2\left[x^2-2.x.\frac{3\left(y+1\right)}{2}+\frac{9\left(y+1\right)^2}{4}\right]+\left[9y^2-12y-\frac{9}{2}.\left(y+1\right)^2\right]+2014\)
\(=2\left[x-\frac{3\left(y+1\right)}{2}\right]^2+\frac{1}{2}\left(3y-7\right)^2+1985\ge1985\)
Dấu "=" xảy ra khi và chỉ khi y = \(\frac{7}{3}\Rightarrow x=5\)
Vậy Min A = 1985 tại \(\left(x;y\right)=\left(5;\frac{7}{3}\right)\)
b) \(B=-x^2+2xy-4y^2+2x+10y-8\)
\(=-\left(x^2-2xy-2x\right)-\left(4y^2-10y\right)-8\)
\(=-\left[x^2-2x\left(y+1\right)+\left(y+1\right)^2\right]-\left[4y^2-10y-\left(y+1\right)^2\right]-8\)
\(=-\left(x-y-1\right)^2-\left(y-2\right)^2+5\le5\)
Dấu đẳng thức xảy ra khi và chỉ khi y = 2 => x = 3
Vậy B đạt giá trị lớn nhất bằng 5 tại (x;y) = (3;2)
\(E=-\left(x^2+y^2+1-2xy-2x+2y\right)-\left(3y^2-12y+12\right)+18\)
\(E=-\left(x-y-1\right)^2-3\left(y-2\right)^2+18\le18\)
\(E_{max}=18\) khi \(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
\(A=-x^2+2xy-4y^2+2x+10y-3\)
\(=10-\left(x^2+y^2+1-2xy-2x+2y\right)-3\left(y^2-4y+4\right)\)
\(=10-\left(x-y-1\right)^2-3\left(y-2\right)^2\le10\)
Vậy \(MaxA=10\), đạt được khi và chỉ khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)