Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=x^{2y^3}+x^{3y^2}-x^2+y^2+5-\left(x^{2y^3}+x^{3y^2}+2y^2-1\right)\)
\(\Rightarrow M=x^{2y^3}+x^{3y^2}-x^2+y^2+5-x^{2y^3}-x^{3y^2}-2y^2+1\)
\(\Rightarrow M=-x^2+y^2-2y^2+6\)
\(\Rightarrow M=-x^2-y^2+6\)
Có \(-x^2\le0;-y^2\le0\)
\(\Rightarrow M\le0+0+6=6\)
Vậy GTLN = 6 <=> x = 0;y=0
Ta có:
M=(x^2y^3+x^3y^2-x^2+y^2+5)-(x^2y^3+x^3y^2+2y^2-1)
=x^2y^3+x^3y^2-x^2+y^2+5-x^2y^3-x^3y^2-2y^2+1
=(x^2y^3-x^2y^3)+(x^3y^2-x^3y^2)-x^2+(y^2-2y^2)+(5+1)
=-x^2-y^2+6
=-(x^2+y^2)+6
Vì \(x^2\ge0;y^2\ge0\)\(\Rightarrow\) \(x^2+y^2\ge0\)nên \(-\left(x^2+y^2\right)\le0\)
Vậy giá trị lớn nhất của biểu thức bằng 6 khi -(x^2+y^2)=0.
Chắc chắn đúng, t**k mik nhé!
\(x,y\inℤ\)phải không?
Ta có:
\(\left(x^2y^2+4x^2+2y^2-4\right)-\left(x^2y^2+5x^2+y^2-3\right)=0\)\(=0\)
\(\Rightarrow x^2y^2+4x^2+2y^2-4-x^2y^2-5x^2-y^2+3=0\) (bỏ ngoặc đổi dấu)
\(\Rightarrow\left(x^2y^2-x^2y^2\right)+\left(4x^2-5x^2\right)+\left(2y^2-y^2\right)+\left(-4+3\right)=0\)
\(\Rightarrow0-x^2+y^2-1=0\)
\(\Rightarrow y^2-x^2=1\)
\(\Rightarrow\left(y-x\right)\left(y+x\right)=1\)
Vậy ta có
\(\left(y-x\right)=1;\left(y+x\right)=1\)\(\Rightarrow y=1;x=0\)
Hoặc \(\left(y-x\right)=-1;\left(y+x\right)=-1\)\(\Rightarrow y=-1;x=0\)
Vậy ...
(Không biết đúng không nữa, nếu thấy đúng thì t***k mik nhé!)