Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ |X-2013|\(\ge\) = 0
=>2014-|X-2013| PHẢI CÓ GT LỚN NHẤT
X-2013=0=>X=2013
VAAYJGTLN CỦA BIỂU THỨC LÀ 2014-|X-2013|
=2014-|2013-2013|
=2014-0=>GTLN LÀ 2014
Lời giải:
Nếu $x> 2013$ thì:
$A=|x-1|+|x-2013|=x-1+x-2013=2x-2014> 2.2013-2014=2012(1)$
Nếu $1\leq x\leq 2013$ thì:
$A=x-1+2013-x=2012$
Nếu $x<1$ thì:
$A=1-x+2013-x=2014-2x> 2014-2.1=2012$
Từ 3 TH trên suy ra $A_{\min}=2012$ khi $1\leq x\leq 2013$
Ta có : \(A=\left|2x-1\right|+\left|2x-2013\right|=\left|2x-1\right|+\left|2013-2x\right|\)
\(\Rightarrow A\ge\left|2x-1+2013-2x\right|=\left|2012\right|=2012\)
Dấu "=" xảy ra <=> \(\left(2x-1\right)\left(2013-2x\right)\ge0\Rightarrow\frac{1}{2}\le x\le\frac{2013}{2}\)
Vậy \(A_{min}=2012\) tại \(\frac{1}{2}\le x\le\frac{2013}{2}\)
Tìm giá trị lớn nhất của các biểu thức ;
a, \(A=\frac{2012}{|x|+2013}\)
b,\(B=\frac{|x|+2012}{-2013}\)
a) \(A=\frac{2012}{\left|x\right|+2013}\)
A lớn nhất\(\Leftrightarrow\left|x\right|+2013\)nhỏ nhất
Mà \(\left|x\right|\ge0\)nên \(\left|x\right|+2013\ge2013\)
\(\Rightarrow A_{min}=\frac{2012}{2013}\)
(Dấu "="\(\Leftrightarrow x=0\))
b)\(B=\frac{\left|x\right|+2012}{-2013}=\frac{-\left|x\right|-2012}{2013}\)
\(B\)lớn nhất\(\Leftrightarrow-\left|x\right|-2012\)lớn nhất
Mà \(-\left|x\right|\le0\)nên \(-\left|x\right|-2012\le-2012\)
\(\Rightarrow B_{max}=\frac{-2012}{2013}\)
(Dấu "="\(\Leftrightarrow x=0\))
Ta có:\(\left|x-2013\right|\ge0\forall x\Rightarrow\left|x-2013\right|+2\ge2\Rightarrow\frac{1}{\left|x-2013\right|+2}\le\frac{1}{2}\Rightarrow A=\frac{2016}{\left|x-2013\right|+2}\le\frac{2016}{2}=1008\)
Dấu "=" xảy ra khi x = 2013
Vậy GTLN của A = 1008 khi x = 2013
A = 2026 / | x - 2013 | + 2
Để A đạt giá trị lớn nhất
\(\Leftrightarrow\)| x - 2013 | + 2 đạt giá trị nhỏ nhất
Ta có :
C = | x - 2013 | + 2
C = | x - 2013 | + 2 \(\ge\)2
Dấu " = " xảy ra \(\Leftrightarrow\)x - 2013 = 0
\(\Rightarrow\) x = 2013
Do đó : Min C = 2\(\Leftrightarrow\)x = 2013
Vậy : Max A = 2026 / 2 = 1013 \(\Leftrightarrow\)x = 2013