Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=x^{2y^3}+x^{3y^2}-x^2+y^2+5-\left(x^{2y^3}+x^{3y^2}+2y^2-1\right)\)
\(\Rightarrow M=x^{2y^3}+x^{3y^2}-x^2+y^2+5-x^{2y^3}-x^{3y^2}-2y^2+1\)
\(\Rightarrow M=-x^2+y^2-2y^2+6\)
\(\Rightarrow M=-x^2-y^2+6\)
Có \(-x^2\le0;-y^2\le0\)
\(\Rightarrow M\le0+0+6=6\)
Vậy GTLN = 6 <=> x = 0;y=0
Ta có:
M=(x^2y^3+x^3y^2-x^2+y^2+5)-(x^2y^3+x^3y^2+2y^2-1)
=x^2y^3+x^3y^2-x^2+y^2+5-x^2y^3-x^3y^2-2y^2+1
=(x^2y^3-x^2y^3)+(x^3y^2-x^3y^2)-x^2+(y^2-2y^2)+(5+1)
=-x^2-y^2+6
=-(x^2+y^2)+6
Vì \(x^2\ge0;y^2\ge0\)\(\Rightarrow\) \(x^2+y^2\ge0\)nên \(-\left(x^2+y^2\right)\le0\)
Vậy giá trị lớn nhất của biểu thức bằng 6 khi -(x^2+y^2)=0.
Chắc chắn đúng, t**k mik nhé!
\(B=-2xy^2+\frac{1}{3}x^3y-x-\frac{1}{3}x^3y+xy^2+x-4x^2y\)
a) \(B=\left(-2+1\right)xy^2+\left(\frac{1}{3}-\frac{1}{3}\right)x^3y+\left(x-x\right)-4x^2y\)
\(B=-xy^2+x^3y+\left(-4\right)x^2y\)
\(B=-xy^2+x^3y-4x^2y\)
b) -xy2 có bậc là 3
x3y có bậc là 4
-4x2y có bậc là 3
=> Bậc của B = 4
c) x = 1 ; y = 2
Thay x = 1 ; y = 2 vào B ta có :
\(B=-xy^2+x^3y-4x^2y\)
\(B=-\left(1\cdot2^2\right)+1^3\cdot2-4\cdot1^2\cdot2\)
\(B=-4+2-8\)
\(B=-10\)
Vậy giá trị của B = -10 khi x = 1 ; y = 2
a, \(B=-2xy^2+\frac{1}{3}x^3y-x-\frac{1}{3}x^3y+xy^2+x-4x^2y\)
\(=-2xy^2+\frac{x^3y}{3}-x-\frac{x^3y}{3}+xy^2+x-4x^2y\)
\(=-xy^2-4x^2y\)
b,
Bậc của -xy2 = 3
Bậc của x3y = 4
Bậc của -4x2y = 3
Bậc của B = 4
c, Thay x = 1 ; y = 2 vào đon thức trên ta đc
\(-\left(1.2^2\right)-4.1^2.2=-4-4.1.2=-4-8=-12\)
M=( x^2y^3 + x^3y^2 - x^2 + y^2 + 5) - (x^2y^3 + x^3y^2 + 2xy^2 -1)
M= x^2y^3 + x^3y^2 - x^2 + y^2 + 5 - x^2y^3 - x^3y^2 - 2xy^2 +1
M= y^2 - x^2- 2xy^2 +6