K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2016

Ta có:\(\frac{3n+7}{n+2}=\frac{3n+6+1}{n+2}=\frac{3\left(n+2\right)+1}{n+2}=3+\frac{1}{n+2}\)

Để \(\frac{3n+7}{n+2}\in Z\) thì \(\frac{1}{n+2}\in Z\)

=>1 chia hết cho n+2

=>n+2\(\in\)Ư(1)={-1,1}

=>n\(\in\){-3,-1}

29 tháng 3 2016

3n+7/n+2=3\(\frac{1}{n+2}\) 

để \(\frac{1}{n+2}\) là số nguyên

=>n+2 là số nguyên

=>n+2 E Ư(1)

Ư(1)=(+-1)

=>n+2=1=>n=-1

=>n+2=-1=>n=-3

đừng chửi mk nhé

15 tháng 2 2018

gọi d là ƯC(3n-2; 4n-3)

\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)

\(\Rightarrow\) \(\left(12n-8\right)-\left(12n-9\right)\) \(⋮\) \(d\)

\(\Rightarrow\) \(12n-8-12n+9\) \(⋮\) \(d\)

\(\Rightarrow\) \(\left(12n-12n\right)+\left(9-8\right)\) \(⋮\) \(d\)

\(\Rightarrow\) \(0+1\) \(⋮\) \(d\)

\(\Rightarrow\) \(1\) \(⋮\) \(d\)

\(\Rightarrow\) \(d\inƯ\left(1\right)=1\)

\(\Rightarrow\) \(\text{3n-2 và 4n - 3 là 2 số nguyên tố cùng nhau}\)

\(\Rightarrow\) \(\frac{3n-2}{4n-3}\) là phân số tối giản

15 tháng 2 2018

1/ Đặt ƯCLN(3n - 2; 4n - 3) = d

=> \(3n-2⋮d\)và \(4n-3⋮d\)

hay \(4.\left(3n-2\right)⋮d\)và \(3.\left(4n-3\right)⋮d\)

hay \(12n-8⋮d\)và \(12n-9⋮d\)

\(\Leftrightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)

\(\Leftrightarrow12n-8-12n+9⋮d\)

\(\Leftrightarrow-8+9⋮d\)

Vậy \(1⋮d\)hay \(d\inƯ\left(1\right)=\left\{1\right\}\)

=> 3n - 2 và 4n - 3 là 2 số nguyên tố cùng nhau

=> phân số \(\frac{3n-2}{4n-3}\)tối giản.

2 tháng 2 2018

a)\(\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}.\text{ Để là số nguyên âm thì }\frac{5}{n-2}< 1\Rightarrow-6< n-2< 0\)

\(\Rightarrow-4< n< 2\)

NHững câu còn lại lm tưng tự!

29 tháng 3 2016

\(\frac{3N+7}{N+2}\) =3\(\frac{1}{N+2}\)

VÌ 3 LÀ SỐ NGUYÊN 

=>\(\frac{1}{N+2}\) LÀ SỐ NGUYÊN

=>N+2 LÀ Ư(1)

=>Ư1=(+-1)

=>N+2=1=>N=-1

=>N+2=-1=>N=-3

=>\(\frac{3N+7}{N+2}\) LÀ SỐ NGUYÊN

ĐỪNG CHỬI MÌNH NHÉ 

MK CHỈ MUỐN ĐƯỢC TÍCH THÔI

OK

29 tháng 3 2016

gọi PS trên là A, ta có:

A là số nguyên=>3n+7: n+2

=>3n+6+13:n+2

=>3[n+2]+13:n+2

=>13:n+2

=>n+2 thuộc Ư[13]

=>n+2{-  {1;-1;13;-13}

=>n{-  {-1;-3;11;-15}

Với n=-1=>A=\(\frac{10}{3}\)[loại]

      n=-3=>A=-2[được]

      n=11=>A=\(\frac{40}{13}\)[loại]

      n=-13=>A=\(\frac{32}{11}\)[loại]

Vậy A=-2

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

21 tháng 4 2020

1, để B nguyên

=> n + 7 ⋮ 3n - 1

=> 3n + 21 ⋮ 3n - 1

=> 3n - 1 + 22 ⋮ 3n - 1

=> 22 ⋮ 3n - 1

2, tương tự thôi bạn

29 tháng 4 2020

CẢM ƠN , HIC

26 tháng 3 2015

a.\(\frac{3.\left(n-12\right)+42}{3n-12}=3+\frac{42}{3n-12}\)

Vì 3 là số nguyên => \(\frac{42}{3n-12}\)cũng là số nguyên

=> 3n-12 là ước của 42 mà Ư(42)=1;2;3;6;7;42;-1;-2;-3;-6;-7;-42

Vì n là số nguyên

=> \(n\in\)( 5;6;18;3;2;-10)

b. \(\frac{3\left(n+7\right)-16}{n+7}=3-\frac{16}{n+7}\)

Vì 3 là số nguyên => \(\frac{16}{n+7}\)cũng là số nguyên 

=> n+7 là ước của 16 mà Ư(16)=1;2;4;16;-1;-2;-4;-16

=>\(n\in\)(-6;-5;-3;9;-8;-9;-11;-23)