Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2x^2+4x+5}=\sqrt{2\left(x^2+2x+1\right)+3}=\sqrt{2\left(x+1\right)^2+3}\)
Do \(2\left(x+1\right)^2+3\ge3>0\forall x\) nên điều kiện xác định của x là: \(x\in R\)
\(\sqrt{2x^2+4x+5}=\sqrt{2\left(x^2+2x+1\right)+3}=\sqrt{2\left(x+1\right)^2+3}\)
\(ĐKXĐ:2x^2+4x+5\ge0\Leftrightarrow2\left(x^2+2x+1\right)+3=2\left(x+1\right)^2+3\ge3>0\)(luôn đúng)
Vậy ĐKXĐ là \(x\in R\) hay pt luôn xác định với mọi x
a)ĐKXĐ :\(x\ge0;x\ne9\)
khai triển => \(P=\frac{x-4}{\sqrt{x}+1}\)
b) Ta có :\(x=\sqrt{14-6\sqrt{5}}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
Thay vào P ta có : \(P=\frac{3-\sqrt{5}-4}{\sqrt{3-\sqrt{5}}+1}=-\frac{7+\sqrt{5}}{\sqrt{3-\sqrt{5}}+1}\)
Mình làm thử, bạn xem có đúng hông nha!
\(ĐKXĐ:\hept{\begin{cases}4x+2\ge0\\x^2+4x+1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-\frac{1}{2}\\\left(x+2\right)^2-3\ge-3\Leftrightarrow x=-2\end{cases}\Leftrightarrow}x\ge-\frac{1}{2}}\)
Mình giải thử lun nha!
\(\sqrt{4x+2}=\sqrt{x^2+4x+1}\) (1)
Bình phương cả 2 vế của pt, ta được:
\(\left(1\right)\Leftrightarrow\left(\sqrt{4x+2}\right)^2=\left(\sqrt{x^2+4x+1}\right)^2\)
\(\Leftrightarrow4x+2=x^2+4x+1\)
\(\Leftrightarrow x^2-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\left(\text{nhận }\right)\\x=-1\left(\text{loại}\right)\end{cases}}}\)
Vậy: \(S=\left\{1\right\}\)
(Nếu đúng thì tíck cho mìk vs nhé!)
ĐKXĐ: \(\hept{\begin{cases}x\ne-1\\\frac{3x-2}{x+1}\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-1\\\orbr{\begin{cases}x\ge\frac{3}{2}\\x\le-1\end{cases}}\end{cases}}}\)
Khi đó: \(\sqrt{\frac{3x-2}{x+1}}=3\)
\(\Leftrightarrow\frac{3x-2}{x+1}=9\)
\(\Leftrightarrow9x+9=3x-2\)
\(\Leftrightarrow6x=-11\)
\(\Leftrightarrow x=\frac{-11}{6}\)(T/m ĐKXĐ)
ĐKXĐ: \(\hept{\begin{cases}x\ne-1\\x\ge\frac{3}{2}hoặcx\le-1\end{cases}}\)