K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 9 2020

ĐKXĐ: \(x^2-4>0\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -2\end{matrix}\right.\)

27 tháng 10 2021

Trả lời:

\(\sqrt{\frac{2}{x^2-4x+4}}\) có nghĩa \(\Leftrightarrow\hept{\begin{cases}\frac{2}{x^2-4x+4}\ge0\\x^2-4x+4\ne0\end{cases}\Leftrightarrow\frac{2}{x^2-4x+4}>0}\)

\(\Leftrightarrow x^2-4x+4>0\Leftrightarrow\left(x-2\right)^2>0\) với mọi x khác 2

Vậy với mọi x khác 2 thì căn thức có nghĩa 

22 tháng 8 2018

\(\sqrt{4x-x^2-2}\)

ĐKXĐ : \(4x-x^2-2\ge0\)

\(\Leftrightarrow x^2-4x+2\le0\)

Ta có : \(x^2-4x+2=0\)

\(\Delta=b^2-4ac=\left(-4\right)^2-4\cdot1\cdot2=8>0\)

=> Phương trình có hai nghiệm

\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{4-\sqrt{8}}{2}=2-\sqrt{2}\)

\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{4+\sqrt{8}}{2}=2+\sqrt{2}\)

Để \(x^2-4x+2\le0\)

\(\Rightarrow\orbr{\begin{cases}x\ge2+\sqrt{2}\\x\le2-\sqrt{2}\end{cases}}\)

Vậy ....

30 tháng 3 2020
https://i.imgur.com/iX7y3qX.jpg
30 tháng 3 2020
https://i.imgur.com/GMDpx0f.jpg
20 tháng 7 2017

potay.com

13 tháng 8 2017

em hổng có biết đâu vì em chưa hc lp 9 mới lại đề bài dài kinh khủng

7 tháng 10 2015

\(=\left(\frac{\sqrt{x}\left(\sqrt{2}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}\right).\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)

\(=\left(\frac{\sqrt{2\text{x}}+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}\right).\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)

\(=\frac{\sqrt{2\text{x}}+x}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)

\(=\frac{\sqrt{2\text{x}}+x}{\sqrt{2}+2}.\frac{\sqrt{x}-2}{\sqrt{4\text{x}}}\)

\(=\frac{x\sqrt{2}-2\sqrt{2\text{x}}+x\sqrt{x}-2\text{x}}{2\sqrt{2\text{x}}+4\sqrt{x}}\)

tick cho mình nha

4 tháng 7 2021

a,\(\sqrt{\frac{x-3}{4-x}}\)

Biểu thức trên xác định

 \(\Leftrightarrow\frac{x-3}{4-x}\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\4-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3\le0\\4-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge3\\4>x\end{cases}}\)hoặc \(\hept{\begin{cases}x\le3\\4< x\end{cases}}\)(loại)

Vậy biểu thức trên xác định khi \(3\le x< 4\)

b, \(\sqrt{\frac{x^2+2x+4}{2x-3}}\)

Biểu thức trên xác định \(\Leftrightarrow\frac{x^2+2x+4}{2x-3}\ge0\)

Ta có \(x^2+2x+4=\left(x+1\right)^2+3\ge3\forall x\)nên \(x^2+2x+4>0\forall x\)

=> Biểu thức trên xác định \(\Leftrightarrow2x-3>0\)

                                             \(\Leftrightarrow2x>3\)

                                               \(\Leftrightarrow x>\frac{3}{2}\)

Vậy biểu thức trên xác định khi \(x>\frac{3}{2}\)

a)\(\sqrt{\frac{x-3}{4-x}}\)có nghĩa \(\Leftrightarrow\frac{x-3}{4-x}\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\4-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3\le0\\4-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x< 4\end{cases}}\)hoặc \(\hept{\begin{cases}x\le3\\x>4\end{cases}}\)(Vô lí)

\(\Leftrightarrow3\le x< 4\)

b)\(\sqrt{\frac{x^2+2x+4}{2x-3}}\)có nghĩa \(\Leftrightarrow\frac{x^2+2x+4}{2x-3}\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x^2+2x+4\ge0\\2x-3>0\end{cases}}\)hoặc \(\hept{\begin{cases}x^2+2x+4\le0\\2x-3< 0\end{cases}}\)

mà \(x^2+2x+4=\left(x+1\right)^2+2\ge2\forall x\)

nên \(\hept{\begin{cases}\left(x+1\right)^2+2\ge2\\2x-3>0\end{cases}}\)

\(\Leftrightarrow x>\frac{3}{2}\)