Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\sqrt{5}+\sqrt{\left(1-\sqrt{5}\right)^2}\\ =2\sqrt{5}+\left|1-\sqrt{5}\right|\\ =2\sqrt{5}+\sqrt{5}-1\\ =3\sqrt{5}-1\)
\(\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}2\sqrt{3}\\ =\dfrac{1}{\sqrt{3}+1}+\dfrac{2\sqrt{3}}{\sqrt{3}-1}\\ =\dfrac{\sqrt{3}-1+2\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}^2-1^2}\\ =\dfrac{\sqrt{3}-1+6+2\sqrt{3}}{2}\\ =\dfrac{3\sqrt{3}+5}{2}\)
Bài 2:
a: ĐKXĐ: 1/x+1>=0
=>x+1>0
=>x>-1
B: ĐKXĐ: (x+1)(x-1)>=0
=>x>=1 hoặc x<=-1
TL:
\(a,\sqrt{\left(\sqrt{3}-x\right)^2}=\sqrt{3}-x\)
BT thỏa mãn \(\forall x\)
a) \(\sqrt{\left(\sqrt{3}-x\right)^2}=\left|\sqrt{3}-x\right|\)
Vậy biểu thức có nghĩa với mọi x
b) \(\sqrt{\frac{-3}{2+x}}\)
Biểu thức có nghĩa\(\Leftrightarrow2+x< 0\Leftrightarrow x< -2\)
a) Để biểu thức \(\sqrt{-\left|x+5\right|}\) có nghĩa thì \(-\left|x+5\right|\ge0\)
\(\Leftrightarrow\left|x+5\right|\le0\)
mà \(\left|x+5\right|\ge0\forall x\)
nên |x+5|=0
hay x=-5
b) Để biểu thức \(\sqrt{\left|x-1\right|-3}\) có nghĩa thì \(\left|x-1\right|-3\ge0\)
\(\Leftrightarrow\left|x-1\right|\ge3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1\ge3\\x-1\le-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-2\end{matrix}\right.\Leftrightarrow x\ge4\)
a) \(ĐKXĐ:x\ge0;x\ne3\)
b) \(A=\left(\frac{x-2\sqrt{3x}+3}{x-3}\right)\left(\sqrt{4x}+\sqrt{12}\right)\)
\(\Leftrightarrow A=\left(\frac{\left(\sqrt{x}-\sqrt{3}\right)^2}{\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)}\right)\left(2\sqrt{x}+2\sqrt{3}\right)\)
\(\Leftrightarrow A=\left(\frac{\sqrt{x}-\sqrt{3}}{\sqrt{x}+\sqrt{3}}\right).2\left(\sqrt{x}+\sqrt{3}\right)\)
\(\Leftrightarrow A=2\left(\sqrt{x}-\sqrt{3}\right)\)
\(\Leftrightarrow A=2\sqrt{x}-2\sqrt{3}\)
c) Thay \(x=4-2\sqrt{3}\)vào A, ta có :
\(A=2\sqrt{4-2\sqrt{3}}-2\sqrt{3}\)
\(\Leftrightarrow A=2\sqrt{\left(1-\sqrt{3}\right)^2}-2\sqrt{3}\)
\(\Leftrightarrow A=2\left(\sqrt{3}-1\right)-2\sqrt{3}\)
\(\Leftrightarrow A=2\sqrt{3}-2-2\sqrt{3}\)
\(\Leftrightarrow A=-2\)
Câu 1:
a: \(P=\dfrac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b: Để \(2P=2\sqrt{5}+5\) thì \(P=\dfrac{2\sqrt{5}+5}{2}\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+5\right)=2\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+3\right)=2\)
hay \(x=\dfrac{4}{29+12\sqrt{5}}=\dfrac{4\left(29-12\sqrt{5}\right)}{121}\)
Câu 1:
a: \(P=\dfrac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b: Để \(2P=2\sqrt{5}+5\) thì \(P=\dfrac{2\sqrt{5}+5}{2}\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+5\right)=2\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+3\right)=2\)
hay \(x=\dfrac{4}{29+12\sqrt{5}}=\dfrac{4\left(29-12\sqrt{5}\right)}{121}\)
a) Biểu thức có nghĩa \(\Leftrightarrow-x^5\ge0\)
\(\Leftrightarrow x^5\le0\) \(\Leftrightarrow x\le0\)
Vậy với \(x\le0\) thì biểu thức \(\sqrt{-x^5}\) có nghĩa
b) Biểu thức có nghĩa \(\Leftrightarrow-\left|x-2\right|\ge0\)
\(\Leftrightarrow\left|x-2\right|\le0\) (1)
Vì \(\left|x-2\right|\ge0\) \(\forall x\) (2)
Từ (1) và (2) \(\Rightarrow\left|x-2\right|=0\) \(\Leftrightarrow x-2=0\) \(\Leftrightarrow x=2\)
Vậy với \(x=2\) thì biểu thức \(\sqrt{-\left|x-2\right|}\) có nghĩa
c) \(ĐKXĐ:x\ne3\)
Biểu thức có nghĩa \(\Leftrightarrow\dfrac{10}{\left(x-3\right)^2}\ge0\)
\(\Leftrightarrow\dfrac{10}{\left(x-3\right)^2}>0\) \(\Leftrightarrow\left(x-3\right)^2>0\) ( do \(10>0\) )
Vì \(\left(x-3\right)^2\ge0\) \(\forall x\)
\(\Rightarrow\) Để \(\left(x-3\right)^2>0\) thì \(x-3\ne0\) \(\Leftrightarrow x\ne3\)
So sánh với ĐKXĐ ta thấy \(x\ne3\) thỏa mãn
Vậy với \(x\ne3\) thì biểu thức \(\sqrt{\dfrac{10}{\left(x-3\right)^2}}\) có nghĩa
mọi người giúp em với em cảm ơn ạ