Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(ĐK:3-2a>0\Leftrightarrow a< \dfrac{3}{2}\)
2) \(ĐK:2x-5< 0\Leftrightarrow x< \dfrac{5}{2}\)
3) \(ĐK:3-5a< 0\Leftrightarrow a>\dfrac{3}{5}\)
4) \(ĐK:a< 0\)
5) \(ĐK:-a\ge0\Leftrightarrow a\le0\)
1: ĐKXĐ: \(a>-2\)
2: ĐKXĐ: \(x\ne2\)
3: ĐKXĐ: \(a\in\varnothing\)
1)
\(-\dfrac{1}{\sqrt{a+2}}\) có nghĩa khi \(\sqrt{a+2}>0\)
=>a+2>0
a>-2
2)
\(\sqrt{\dfrac{3}{\left(x-2\right)^2}}=\dfrac{\sqrt{3}}{\sqrt{\left(x-2\right)^2}}\)
mà \(\left(x-2\right)^2>0=>\sqrt{\left(x-2\right)^2}>0vớimọix\)
3)
\(\sqrt{\dfrac{-3}{a^2-4a+4}}=\sqrt{\dfrac{-3}{\left(a-2\right)^2}}cónghĩakhi\left(a-2\right)^2< 0mà\left(a-2\right)^2>0=>biểuthứckocónghĩavớimọia\)
1: ĐKXĐ: \(-1< x< 1\)
2: ĐKXĐ: \(\left[{}\begin{matrix}x>2\\x\le-1\end{matrix}\right.\)
3: ĐKXĐ: \(\left[{}\begin{matrix}x< -3\\x\ge2\end{matrix}\right.\)
4: ĐKXĐ: \(2< a\le3\)
1) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\y\ge0\\\sqrt{x}+\sqrt{y}\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\)
2) ĐKXĐ: \(x^2+2x+2>0\Leftrightarrow\left(x^2+2x+1\right)+1>0\Leftrightarrow\left(x+1\right)^2+1>0\left(đúng\forall x\right)\)
3) ĐKXĐ: \(x^2-4x+5< 0\Leftrightarrow\left(x^2-4x+4\right)+1< 0\Leftrightarrow\left(x-2\right)^2+1< 0\left(VLý.do.\left(x-2\right)^2+1\ge1>0\right)\)
Vậy biểu thức không xác định với mọi x
Đkien
a) \(\left\{{}\begin{matrix}x\ge0;y\ge0\\\sqrt[]{x}+\sqrt{y}\ne0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge0,y>0\\x>0,y\ge0\end{matrix}\right.\)
b) \(\dfrac{2}{x^2+2x+2}\ge0\Leftrightarrow x^2+2x+2>0\)
\(\Leftrightarrow x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}>0\forall x\)
=> PT luôn xác định
c) \(-\dfrac{3}{x^2-4x+5}\ge0\Leftrightarrow x^2-4x+5< 0\)
\(\)=> vô nghiệm
Vậy căn thức k xác định
a, \(x+1\ge0\Leftrightarrow x\ge-1\)
b, \(1-2x\ge0\Leftrightarrow x\le\dfrac{1}{2}\)
c, \(\left\{{}\begin{matrix}x+1\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ge2\end{matrix}\right.\Leftrightarrow x\ge2\)
d, \(\left\{{}\begin{matrix}2-3x\ge0\\1-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{2}{3}\\x\le\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x\le\dfrac{1}{2}\)
e, \(\left\{{}\begin{matrix}\sqrt{3}-2x\ge0\\x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{\sqrt{3}}{2}\\x\ne1\end{matrix}\right.\Leftrightarrow x\le\dfrac{\sqrt{3}}{2}\)
1: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\)
2: Ta có: \(P=\dfrac{x-3}{\sqrt{x-1}-2}\)
\(=\dfrac{x-1-2}{\sqrt{x-1}-2}\)
\(=\sqrt{x-1}+2\)
a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x>\dfrac{2\sqrt{14}}{7}\\x< -\dfrac{2\sqrt{14}}{7}\end{matrix}\right.\)
c: ĐKXĐ: \(x=\dfrac{1}{3}\)
d: ĐKXĐ: \(-\dfrac{2}{3}< x\le\sqrt{3}\)
Bài 1:
Ta có: \(\left(3\sqrt{50}-5\sqrt{18}+3\sqrt{8}\right)\cdot\sqrt{2}\)
\(=\left(15\sqrt{2}-15\sqrt{2}+6\sqrt{2}\right)\cdot\sqrt{2}\)
\(=6\sqrt{2}\cdot\sqrt{2}\)
=12
Bài 2:
1) ĐKXĐ: \(x\le0\)
2) ĐKXĐ: \(x\le2\)
3) ĐKXĐ: \(x>\dfrac{-3}{2}\)
4) ĐKXĐ: x>0
5) ĐKXĐ: x<3
1) ĐKXĐ: \(x^2+2x-3\ge0\Leftrightarrow\left(x+1\right)^2\ge4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1\ge2\\x+1\le-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le-3\end{matrix}\right.\)
2) ĐKXĐ: \(2x^2+5x+3\ge0\Leftrightarrow2\left(x+\dfrac{5}{4}\right)^2\ge\dfrac{1}{8}\Leftrightarrow\left(x+\dfrac{5}{4}\right)^2\ge\dfrac{1}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{5}{4}\ge\dfrac{1}{4}\\x+\dfrac{5}{4}\le-\dfrac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge-1\\x\le-\dfrac{3}{2}\end{matrix}\right.\)
3) ĐKXĐ: \(x-1>0\Leftrightarrow x>1\)
4) ĐKXĐ: \(x-3< 0\Leftrightarrow x< 3\)
5) ĐKXĐ: \(x+2< 0\Leftrightarrow x< -2\)
6) ĐKXĐ: \(2a-1>0\Leftrightarrow a>\dfrac{1}{2}\)