Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 5x^2 +5xy - x - y
= 5x ( x+ y ) - (x + y)
= ( 5x - 1)(x + y)
b, 2x^2 + 3x - 5
= 2x^2 - 2x + 5x - 5
= 2x( x - 1) + 5( x - 1)
= ( 2x + 5 )(x- 1 )
c; 16x - 5x^2 - 3
c, = - ( 5x^2 - 16x + 3 )
= - ( 5x^2 - x - 15x + 3 )
= - [ x(5x - 1 ) - 3 (5x - 1) ]
= - ( x- 3)(5x - 1 )
a)x^2-(a+b)x+ab
= x^2 - ax - bx + ab
= (x^2 - ax) - (bx - ab)
= x(x-a) - b(x-a)
= (x-b)(x-a)
b)7x^3-3xyz-21x^2+9z
=
c)4x+4y-x^2(x+y)
= 4(x + y) - x^2(x+y)
= (4-x^2) (x+y)
= (2-x)(2+x)(x+y)
d) y^2+y-x^2+x
= (y^2 - x^2) + (x+y)
= (y-x)(y+x)+ (x+y)
= (y-x+1) (x+y)
e)4x^2-2x-y^2-y
= [(2x)^2 - y^2] - (2x +y)
= (2x-y)(2x+y) - (2x+y)
= (2x -y -1)(2x+y)
f)9x^2-25y^2-6x+10y
=
a) \(A=5\left(x-y\right)+ax-ay=\left(a+5\right)\left(x-y\right)\)
b) \(B=a\left(x+y\right)-4x-4y=\left(x+y\right)\left(a-4\right)\)
c) \(C=xz+yz-5\left(x+y\right)=\left(x+y\right)\left(z-5\right)\)
d) \(D=a\left(x-y\right)+bx-by=\left(a+b\right)\left(x-y\right)\)
e) \(E=x\left(x+y\right)-5x-5y=\left(x-5\right)\left(x+y\right)\)
f) \(F=x^2-x-y^2-y=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)
g) \(G=x^2-xy+x-y=x\left(x-y\right)+x-y=\left(x+1\right)\left(x-y\right)\)
A = 5(x - y) + ax - ay = 5(x - y) + a(x - y) = (a + 5)(x - y)
B = a(x + y) - 4x - 4y = a(x + y) - 4(x + y) = (a - 4)(x + y)
C = xz + yz - 5(x + y) = z(x + y) - 5(x + y) = (z - 5)(x + y)
D = a(x - y) + bx - by = a(x - y) + b(x - y) = (a + b)(x - y)
E = x(x + y) - 5x - 5y = x(x + y) - 5(x + y) = (x - 5)(x + y)
F = x2 - x - y2 - y = (x2 - y2) - (x + y) = (x2 - xy + xy - y2) - (x + y) = [x(x - y) + y(x - y)] - (x + y) = (x - y)(x + y) - (x + y) = (x + y)(x - y - 1)
G = x2 - xy + x - y = x(x - y) + (x - y) = (x + 1)(x - y)
a: \(N=\dfrac{3x^5-4x^4+6x^3}{-2x^2}=-\dfrac{3}{2}x^3+2x^2-3x\)
b: \(N=\dfrac{\left(6x^4y^5-3x^3y^4+\dfrac{1}{2}x^4y^3z\right)}{-\dfrac{1}{3}x^2y^3}=-18x^2y^2+9xy-\dfrac{3}{2}x^2z\)
c: \(\Leftrightarrow N\cdot\left(y-x\right)=\left(x-y\right)^3\)
\(\Leftrightarrow N=\dfrac{\left(x-y\right)^3}{y-x}=-\left(y-x\right)^2\)
d: \(\Leftrightarrow N\cdot\left(y^2-x^2\right)=\left(y^2-x^2\right)^2\)
hay \(N=y^2-x^2\)