Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2+2^2+2^3+......+2^{1000}\Rightarrow2A=2^2+2^3+2^4+......+2^{1001}\)
\(\Rightarrow2A-A=A=2^{1001}-2=\left(....2\right)-2=\left(.....0\right)\)
\(B=1+3^2+3^4+.........+3^{100}\Rightarrow9B=3^2+3^4+3^6+......+3^{102}\)
\(\Rightarrow9B-B=8B=3^{102}-1\Rightarrow B=\frac{3^{102}-1}{8}=\frac{\left(.....8\right)}{8}\)
=> B có tận cùng là 1 hoặc 6 nhưng Tổng B gồm 51 số hạng lẻ
=> B có tận cùng là 1
22003 = 22000 .23 = (....6). 8 = ...8
499 = 496 . 43 = ( ...6 ) . (...4) = (...4)
999 = (...9)
399 = 396 . 33 = (...1) . 27 = ...7
799 = 796 . 73 = (...1 ) . 343 = ...3
Công thức :
...24n = ..6
...34n = ...1
...44n = ...6
...5n = ...5
...6n = ... 6
...74n = ...1
...84n = ...6
...92n = ...1 ; ...92n+1 = ...9
...0n = ...0
Với n khắc 0 và thuốc N nhé
Có j ko hiểu ib mk nha
S = 2 + 22 + 23 + 24 + .......+ 22015(1)
2S=22+23+25+....+22016(2)
Lấy (2)-(1)
2S-S=(22+23+25+....+22016)-(2 + 22 + 23 + 24 + .......+ 22015)
S=22016-2
=(24)504-2
=16504-2
=....6-2
=....4
Vậy chữ số tận cùng của S là 4
S = 2 + 22 + 23 + 24 + .......+ 22015
2S = 22+23+24+25+...+22015+22016
Lấy 2S -S ta có
2S - S = ( 22+23+24+25+...+22015+22016 ) - ( 2 + 22 + 23 + 24 + .......+ 22015)
S = 22016 - 2
Ta có 22016 = (24)504
= 16504
= (...6)
=> S = (...6) - 2
=> S = (...4)
Vậy số tận cùng của tổng trên là 4
\(17^{2018}=17^{4.504+2}=\left(17^4\right)^{504}.17^2=83521^{504}.289\)
Do chữ số tận cùng của 83521 là 1 => Chữ số tận cùng của 83521504 cũng là 1 => chữ số tận cùng của 83521504 x 289 sẽ là 1 x 9 = 9
hok tốt!
\(2^{2022}=2^2.\left(2^4\right)^{505}=4.\left(\overline{...6}\right)=\overline{...4}\)
\(2^{2015}=2^3.\left(2^4\right)^{503}=8.\left(\overline{...6}\right)=\overline{...8}\)
\(2^{2027}=2^3.\left(2^4\right)^{506}=8.\left(\overline{...6}\right)=\overline{...8}\)
\(3^{2020}=\left(3^4\right)^{505}=81^{505}=\overline{...1}\)
\(7^{2050}=7^2.\left(7^4\right)^{512}=49.\left(\overline{...1}\right)=\overline{...9}\)
Kết luận: chữ số tận cùng của các số 22022 ; 22015 ; 22027 ; 32020 ; 72050 lần lượt là 4 ; 8 ; 8 ; 1 ; 9.
Chú ý: Các số có chữ số tận cùng là 0, 1, 5, 6 khi nâng lên lũy thừa khác 0 thì chữ số tận cùng vẫn không thay đổi.
\(S=1+2+2^2+...+2^{99}\)
\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)
\(S=3+2^2.3+...+2^{98}.3\)
\(=3\left(1+2^2+...+2^{98}\right)⋮3\)