Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Ta có:}2;6;10;...;8010\text{ đều chia 4 dư 2}\)
\(\Rightarrow X\equiv2^2+3^2+4^2+....+2004^2\left(mod\text{ }10\right)\)
\(\text{ mà:}1^2+2^2+3^2+....+2004^2=\frac{2004.2005.4009}{6}=333.2005.4009\)
\(\Rightarrow X\equiv333.2005.4009-1\left(\text{mod 10}\right)\equiv3.5.9-1\equiv4\left(\text{mod 10}\right)\)
Vậy X có chữ số tận cùng là 4
\(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2^{10}-1}\)
\(< 1+\frac{1}{2}+\frac{1}{2}+\left(\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}\right)+..........\left(\frac{1}{2^9}+\frac{1}{2^9}+....+\frac{1}{2^9}\left(\text{512 số hạng }\frac{1}{2^9}\right)\right)\)
\(=1+1+1+1+1+1+1+1+1+1\)
\(=10\left(\text{điều phải chứng minh}\right)\)
\(\text{bài 2 câu b tương tự câu a}\)
Ta có \(2^{4k+2}=16^k.4\)
Mà \(16^k\)luôn tận cùng là 6
=> Các số \(...2^{4k+2}\)luôn tận cùng là 4
Tương tự : \(...3^{4k+2}\)tận cùng là 3^2=9
\(...4^{4k+2}\)tận cùng là 6
\(...5^{4k+2}\)tận cùng là 5
..........................................
\(...9^{4k+2}\)tận cùng là 1
=> \(..2^{4k+2}+..3^{4k+2}+...+..9^{4k+2}=..4+..9+..6+..5+...+..1=...4\)
Áp dụng
=> \(A=\left(2^2+...+9^{30}\right)+...\left(1900^{4k+2}+...+1999^{4k'+2}\right)+\left(2000^{4k''+2}+...+2004\right)^{8010}\)
\(=...4+...5+...5+...5+...+...5+...0\)
\(=...9\)
Vậy A tận cùng là 9
Chữ số tận cùng là 0 vì Y : X là kết quả có chữ số tận cùng là 0 mà nếu một phép chia có kết quả có tận cùng là 0 thì :
+ Số bị chia có tận cùng là 0
+ Số chia có tận cùng là 0
+Cả 2 trường hợp trên
Trong trường hợp này là số chia có tận cùng là 0 mà X là số chia nên X có tận cùng là 0
Đúng thì tick nha , thank you vinamilk!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!