Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
Gọi số cần tìm là : 9ab
Theo bài ra , ta có : 9ab = ab x 13
900 + ab = ab x 13
12.ab = 900
ab = 900 : 12
ab = 75
Vậy số cần tìm đó là : 975
Gọi số cần tìm là \(\overline{9ab}\) (\(a,b\in N,0< a\le9,0\le b\le9\))
Theo đề bài : \(\overline{ab}=\frac{1}{13}.\overline{9ab}\)
\(\Leftrightarrow\overline{ab}=\frac{1}{13}.\left(900+\overline{ab}\right)\)
\(\Leftrightarrow\frac{12}{13}\overline{ab}=\frac{900}{13}\)
\(\Leftrightarrow\overline{ab}=75\)
Vậy số cần tìm là 975
dễ mà tick nha mk làm cho