Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy:
$4567^2=....9\equiv -1\pmod {10}$
$\Rightarrow (4567)^{2014}=(4567^2)^{1007}\equiv (-1)^{1007}\equiv -1\equiv 9\pmod {10}$
$\Rightarrow 4567^{2014}$ tận cùng là $9$.
1)
a) Ta có:
3512=353.353.353.353=....75......75....75.....75=....25
Vậy hai chữ số tận cùng của 3512là 25
b) Ta có:
5523=52.52....52.5=....25....25 . ... .....25 . 5 = ....25
=> Hai chữ số tận cùng của 5523 là 25
Vậy hai chữ tận cùng của 5523 là 25.
81975 = (84)493.83 = \(\overline{..6}\)493. \(\overline{...2}\) = \(\overline{..2}\)
Ta có: \(135\equiv5\left(mod10\right)\)
=> \(135^{81}\equiv5^{81}\equiv5\left(mod10\right)\)
=> Chữ số tận cùng của \(135^{81}\) là số 5
Vì 5^3 = 125 có tận cùng là 5
Nên (5^3)^27 = 5^81 có tận cùng là 5
Do đó 135^81 có tận cùng là 5
2^1993=896977105683011347056900938420064050017435704756793125373158388145129891712789307700515223684770523373785909874208955291755561688174261977676508872005197801086953040197752187505381087095625350558038492109870986287356370809737409093338414265941143390397695285610643740694879918793932122262001282984143224073001319601441082075018589725061828585163552941409601583724270514300953188533095947591884905338415676554651534516617357655143781579373852994152663198702360093129335607684294312805938140290754926427776409574872859496315224893901812925850900592061583009183090068756428459147015355107517069149601792