Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{y^3-1}-\frac{y}{x^3-1}\)
\(=\frac{1-y}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}\)
\(=\frac{-x^2-x-1+y^2+y+1}{\left(x^2+x+1\right)\left(y^2+y+1\right)}\)
\(=\frac{\left(y^2-x^2\right)+y-x}{x^2y^2+x^2y+x^2+xy^2+xy+x+y^2+y+1}\)
\(=\frac{\left(y-x\right)\left(y+x\right)+y-x}{x^2y^2+x^2y+xy^2+x^2+xy+y^2+x+y+1}\)
\(=\frac{y-x+y-x}{x^2y^2+xy\left(x+y\right)+x\left(x+y\right)+y^2+x+y+1}\)
\(=\frac{2\left(y-x\right)}{x^2y^2+xy+x+y^2+x+y+1}\)
\(=\frac{2\left(y-x\right)}{x^2y^2+x\left(y+1\right)+y^2+x+y+1}\)
\(=\frac{2\left(y-x\right)}{x^2y^2+\left(1-y\right)\left(y+1\right)+y^2+\left(x+y\right)+1}\)
\(=\frac{2\left(y-x\right)}{x^2y^2+1-y^2+y^2+1+1}\)
\(=\frac{2\left(y-x\right)}{x^2y^2+3}\)
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
\(\frac{x^2}{y}+x=2\\\)và\(\frac{y^2}{x}+y=\frac{1}{2}\)
Xét 2 biểu thức trên ta có
\(\left(\frac{x^2}{y}+x\right).\left(\frac{y^2}{x}+y\right)=\frac{1}{2}.2\)
\(\frac{x^2}{y}.\frac{y^2}{x}+\frac{x^2}{y}.y+x.\frac{y^2}{x}+x.y=1\)
\(xy+x^2+y^2+xy=1\\\)
\(x^2+2xy+y^2=1\\\)
\(\left(x+y\right)^2=1\)
\(\hept{\begin{cases}x+y=1\\x+y=-1\end{cases}}\)
\(\hept{\begin{cases}x=-y\\x=-1-y\end{cases}}\)