Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2-2x(y-1)+y2-3=0
\(\Delta'=\left(y-1\right)^2-\left(y^2-3\right)\ge0.\)
<=> 4-2y\(\ge\)0=> y\(\le\)2
=> ymax=2
Khi đó x=y-1=1
ta có :
\(x^3-6x^2+12x-8-y^3=19\Leftrightarrow\left(x-2\right)^3-y^3=19\)
\(\Leftrightarrow\left(x-2-y\right)\left[\left(x-2\right)^2+y\left(x-2\right)+y^2\right]=19\)
vì \(\left(x-2\right)^2+y\left(x-2\right)+y^2\ge0\) và là ước của 19 nên ta có :
\(\hept{\begin{cases}x-2-y=1\\\left(x+2\right)^2+y\left(x+2\right)+y^2=19\end{cases}\Leftrightarrow x-2=y+1\Rightarrow\left(y+1\right)^2+y\left(y+1\right)+y^2=19}\)
\(\Leftrightarrow3y^2+3y-18=0\Leftrightarrow\orbr{\begin{cases}y=2\Rightarrow x=5\\y=-3\Rightarrow x=0\end{cases}}\)
hoặc \(\hept{\begin{cases}x-2-y=19\\\left(x+2\right)^2+y\left(x+2\right)+y^2=1\end{cases}\Leftrightarrow x-2=y+19\Rightarrow\left(y+19\right)^2+y\left(y+19\right)+y^2=19}\)
vô nghiệm .
Vậy \(\orbr{\begin{cases}y=2\Rightarrow x=5\\y=-3\Rightarrow x=0\end{cases}}\)
Đặt \(\hept{\begin{cases}x+y=a\\xy=b\end{cases}}\) thì ta có phương trình:
\(ab^2+a=3+b\Leftrightarrow a\left(b^2+1\right)=b+3\)
\(\Leftrightarrow a=\frac{b+3}{b^2+1}\). Nếu \(b=3\) vô nghiệm thì xét \(b\ne3\)
Khi đó: \(a=\frac{b+3}{b^2+1}\Leftrightarrow a\left(b-3\right)=\frac{b^2-9}{b^2+1}\)\(=\frac{b^2+1-10}{b^2+1}\)
\(=\frac{b^2+1}{b^2+1}-\frac{10}{b^2+1}=1-\frac{10}{b^2+1}\)
Suy ra \(b^2+1\inƯ\left(10\right)=....\)
Tự làm nốt nhá, trở thành bài lớp 6 r` :)
1. Ta có: \(x^2-2xy-x+y+3=0\)
<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)
<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)
<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)
<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)
Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)
Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
Kết luận:...
\(x^3-2x^2+3x=y^3+1\Leftrightarrow x^3-2x^2+3x-1=y^3\)
Ta có: \(y^3-\left(x+1\right)^3=\left(x^3-2x^2+3x-1\right)-\left(x^3+3x^2+3x+1\right)=-5x^2-2< 0\Rightarrow y^3< \left(x+1\right)^3\Rightarrow y< x+1\)(1)
\(y^3-\left(x-1\right)^3=\left(x^3-2x^2+3x-1\right)-\left(x^3-3x^2+3x-1\right)=x^2\ge0\Rightarrow y^3\ge\left(x-1\right)^3\Rightarrow y\ge x-1\)(2)
Từ (1) và (2) suy ra \(x-1\le y< x+1\Rightarrow\orbr{\begin{cases}y=x-1\\y=x\end{cases}}\)(do x, y nguyên)
Vậy phương trình có 2 cặp nghiệm nguyên \(\left(x;y\right)\in\left\{\left(0;-1\right);\left(1;1\right)\right\}\)