K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

 Bổ đề : Số chính phương chia 5 chỉ dư 1 và 4 (bạn tự CM)
Ta dễ dàng thấy 5^2p + 2013 chia 5 dư 3 (vế trái chia 5 dư 3)                                                            (1)
Từ bổ đề ta có q^2 chia 5 dư 1 hoặc 4 mà 5^2p^2 chia hết cho 5 nên vế phải chia 5 dư 1 hoặc 4 (2)
Từ (1) (2), ta thấy sự mâu thuẫn
Vậy không có p q nguyên tố thoả mãn đề bài

k nhé

13 tháng 2 2020

Câu hỏi của FFPUBGAOVCFLOL - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo nhé

11 tháng 2 2020

Ta chứng minh a2 với a nguyên chia 5 chỉ có số dư là 0;1;4

Thật vậy: a là số nguyên nên a có 5 dạng

+) Nếu a = 5k thì \(a^2=\left(5k\right)^2=25k^2⋮5\)(dư 0)

+) Nếu a = 5k + 1 thì \(a^2=\left(5k+1\right)^2=25k^2+10k+1\)(chia 5 dư 1)

+) Nếu a = 5k + 2 thì \(a^2=\left(5k+2\right)^2=25k^2+20k+4\)(chia 5 dư 4)

+) Nếu a = 5k + 3 thì \(a^2=\left(5k+3\right)^2=25k^2+30k+9\)(chia 5 dư 4)

+) Nếu a = 5k + 4 thì \(a^2=\left(5k+4\right)^2=25k^2+40k+16\)(chia 5 dư 1)

Vậy ta đã có đpcm.

Áp dụng vào bài toán: \(q^2\)chia 5 chỉ có thể dư 0;1 hoặc 4

Lại có: \(5^{2p^2}\)chia hết cho 5 nên \(5^{2p^2}+q^2\)chia 5 dư 0;1 hoặc 4

Ta có: \(5^{2p}⋮5\)và 2013 chia 5 dư 3 nên \(5^{2p}+2013\)chia 5 dư 3 

Vế trái chia 5 dư 3 , vế phải chia 5 dư 0;1 hoặc 4 nên không có cặp số nguyên tố (p;q) thỏa mãn bài toán

13 tháng 2 2020

Câu hỏi của FFPUBGAOVCFLOL - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo nhé

5 tháng 6 2015

 bổ đề: " Một số chính phương a^2 khi chia cho 5 chỉ có thể dư 0; 1 hoặc 4 " 

Chứng minh: Ta xét 5 trường hợp: 
+ a = 5k => a^2 = 25k^2, chia 5 dư 0 

+ a = 5k + 1 => a^2 = (5k + 1)^2 = 25k^2 + 10k + 1, chia 5 dư 1 

+ a = 5k + 2 => a^2 = (5k + 2)^2 = 25k^2 + 20k + 4, chia 5 dư 4 

+ a = 5k + 3 => a^2 = (5k + 3)^2 = 25k^2 + 30k + 9, chia 5 dư 4 

+ a = 5k + 4 => a^2 = 25k^2 + 40k + 16, chia 5 dư 1 

Vậy bổ đề được chứng minh 

Trở lại bài toán: Ta có (5^(2p)) + 1997 chia 5 dư 2 

(5^(2p^2)) + q^2 chia 5 dư q^2, áp dụng bổ đề ta được q^2 chia 5 chỉ có thể dư 0, 1 hoặc 4 chứ không thể dư 2 => 2 số (5^(2p))+1997 và (5^(2p^2))+q^2 khi chia cho 5 không bao giờ có cùng số dư, vậy nên chúng không thể bằng nhau 

=> không tồn tại 2 số nguyên tố p và q thỏa mãn yêu cầu bài toán 
 

 

chắc vậy

5 tháng 6 2015

bổ đề: " Một số chính phương a^2 khi chia cho 5 chỉ có thể dư 0; 1 hoặc 4 " 

Chứng minh: Ta xét 5 trường hợp: 
+ a = 5k => a^2 = 25k^2, chia 5 dư 0 

+ a = 5k + 1 => a^2 = (5k + 1)^2 = 25k^2 + 10k + 1, chia 5 dư 1 

+ a = 5k + 2 => a^2 = (5k + 2)^2 = 25k^2 + 20k + 4, chia 5 dư 4 

+ a = 5k + 3 => a^2 = (5k + 3)^2 = 25k^2 + 30k + 9, chia 5 dư 4 

+ a = 5k + 4 => a^2 = 25k^2 + 40k + 16, chia 5 dư 1 

Vậy bổ đề được chứng minh 

Trở lại bài toán: Ta có (5^(2p)) + 1997 chia 5 dư 2 

(5^(2p^2)) + q^2 chia 5 dư q^2, áp dụng bổ đề ta được q^2 chia 5 chỉ có thể dư 0, 1 hoặc 4 chứ không thể dư 2 => 2 số (5^(2p))+1997 và (5^(2p^2))+q^2 khi chia cho 5 không bao giờ có cùng số dư, vậy nên chúng không thể bằng nhau 

=> không tồn tại 2 số nguyên tố p và q thỏa mãn yêu cầu bài toán 

4 tháng 4 2016

sory anh nha , em mới hok lớp 5 ak