Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.64a=80b=96c=>\(\frac{64a}{960}=\frac{80b}{960}=\frac{96c}{960}\)
=>\(\frac{a}{15}=\frac{b}{12}=\frac{c}{10}\)
......ko biết
2.Có:xy+3x+y=4
=>x(y+3)+y=4
=>x(y+3)+(y+3)=4+3=7
=>(x+1)(y+3)=7=>x+1 và y+3 thuộc Ư(7)
x+1 | -1 | -7 | 1 | 7 |
y+3 | -7 | -1 | 7 | 1 |
x | -2 | -8 | 0 | 6 |
y | -10 | -4 | 4 | -2 |
Với các cặp số(x;y) trên ko có số nào thỏa mãn x+y=19
Ta có: 64=2.2.2.2.2.2
80=2.2.2.2.5
96=2.2.2.2.2.3
=>BCLN(64,80,96)=2.2.2.2.2.2.3.5=960
Vì a,b,c nhỏ nhất nên 64a=80b=96c
=>a=960:64=15
b=960:80=12
c=960:96=10
Vậy a=15 ; b=12 ; c=10
x(y+1)+(y+1)=1
(y+1)(x+1)=1
y+1=1=>y=0
x+1=1=> x=0=> x=y=0
x+1=-1=>x=-2
y+1=-1=> y=-2=> x=y=-2
TH1: để xem xy có khác nhau ko nếu khacs nhau thí thiếu điều kiện
TH2: nếu có thể giống nhau thì xy đều =0
Bài 1:
Đặt $20x=25y=30z=t$ với $t$ là số tự nhiên khác 0.
$\Rightarrow x=\frac{t}{20}; y=\frac{t}{25}; z=\frac{t}{30}$
Để $x,y,z$ là stn thì $t\vdots 20,25,30$
$\Rightarrow t=BC(20,25,30)$
Để $x,y,z$ nhỏ nhất và khác 0 thì $t$ nhỏ nhất và khác 0
$\Rightarrow t=BCNN(20,25,30)$ sao cho $t\neq 0$
$\Rightarrow t=300$
$\Rightarrow x=\frac{t}{20}=\frac{300}{20}=15, y=\frac{t}{25}=\frac{300}{25}=12; z=\frac{300}{30}=10$
Bài 2:
$2n+1\vdots n-1$
$\Rightarrow 2(n-1)+3\vdots n-1$
$\Rightarrow 3\vdots n-1$
$\Rightarrow n-1\in \left\{1; -1; 3;-3\right\}$
$\Rightarrow n\in \left\{3; 0; 4; -2\right\}$
=> 1 = 1/x + 1/y + 2/xy
=> xy/xy = y/xy + x/xy + 2/xy
=> xy/xy = (y+x+2)/xy
=> xy = y+x+2
=> xy - x - y = 2
=> xy - x - y + 1 = 3
=> (x-1)(y-1) = 3
Do x,y ∈ N* nên x-1, y-1 ∈ N
=> (x-1, y-1) = (1,3); (3,1)
=> (x,y)= (2,4); (4,2) (thử lại thỏa mãn)
Vậy (x,y)= (2,4); (4,2)