K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2016

Có 1 trường hợp là : x = 1 ; y = 1 ; z = 0 

16 tháng 5 2016

không có  trường hợp nào  

21 tháng 8 2016

Ta có: \(2006^x=2005^y+2004^z>1\)

\(\Rightarrow x\ge1\)

Vì \(2006^x\) là số chẵn, \(2005^y\) là số lẻ 

nên \(2004^z\) là số lẻ

\(\Rightarrow z=0\)

Lúc đó, ta có phương trình: \(2006^x=2005^y+1\)

Lại có: \(\hept{\begin{cases}2005\equiv1\left(mod4\right)\Rightarrow2005^y+1\equiv2\left(mod4\right)♣\\2006=4m+2\Rightarrow2006^x=4k+2^x\end{cases}}\) 

Với \(x\ge2\) thì \(2006^x\) chia hết cho 4, mâu thuẫn với ♣.

      Vậy \(x=y=1;z=0\)

21 tháng 8 2016

Có 1 trường hợp là \(x=1;y=1;z=0\)

22 tháng 11 2017

 Ta thấy nếu x lẻ => VT chẵn => z chẵn ko phải số nguyên tố 

Vậy x chỉ là số chẵn mà nguyên tố => x= 2 

Với y=2 => z= 5 thỏa đk đề bài 

Nếu y>2 => y lẻ (vì y nguyên tố) 

=> y =2k +1 
=> 2^(2k+1) +1 = 2.4^k + 1 = 2.(3p+1) + 1 = 3m 

Như vậy khi x=2 và y nguyên tố > 2 thì VT luôn chia hết cho 3 
=>z chia hết cho 3 không thỏa đk 

Vậy x=y=2; z= 5 là duy nhất 

3 tháng 11 2017

x = 2 

y = 2

z = 5

4 tháng 12 2016

LƯU Ý
Các bạn học sinh  ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math không thể áp dụng các biện pháp như trừ điểm, thậm chí mở vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần

9 tháng 12 2016

\(x,y,z\ne0\)vế trái luôn lẻ VP luon chan=>\(x,y,z\)phai co so =0

y,z=0 vo nghiem

x=0=> 1+2017^y=2018^z

co nghiem (x,y,z)=(0,1,1) 

19 tháng 10 2018

a) Xét x(y+3) +y =14

     => x(y+3) +(y+3) = 14+3

     => (y+3)(x+1)=17

     => 17 chia hết cho y+3 (đpcm)

b) Vì  (y+3)(x+1)=17

          => y+3 và x+1 là ước của 17

                 Mà x,y là số tự nhiên

          => y+3 và x+1 thuộc tập hợp 1 , 17

Ta có bảng sau:

x+1117
x016
y+3171
y14-2

Mà x,y là số tự nhiên => x=0 thì y=14

Vậy x=0 thì y=14