\(5^x=y^4+4y+1\).

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có \(5^x=y^4+4y+1\)

\(\Leftrightarrow5^x=\left(y+2\right)^2-3\)

\(\Leftrightarrow5^x-\left(y+2\right)^2=-3\)

Xét x=0

\(\Rightarrow\left(y+2\right)^2=1+3=4\)

\(\Rightarrow y+2=2\Rightarrow y=0\left(tm\right)\)

Xét x>0 

Vì 5x và -3 là 2 số lẻ => (y+2)2là số chẵn

Đặt (y+2)2=4k2                (k>1)

=> (y+2)2=5x+3

=> 5x=4k2-3

Vì k>1 nên 4k2-3\(⋮̸\)5

Vậy x=0,y=0 

1 tháng 7 2019

còn x=2 và y=2 nữa nha bn

10 tháng 8 2020

\(A=\frac{1}{x^2+y^2}+\frac{501}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+\frac{500}{xy}\)

\(\ge\frac{5}{\left(x+y\right)^2}+\frac{500}{\frac{\left(x+y\right)^2}{2}}=5+1000=1005\)

Dấu "=" xảy ra \(< =>x=y=\frac{1}{2}\)

đoán là sai

10 tháng 8 2020

\(A=\frac{1}{x^2+y^2}+\frac{501}{xy}\)

\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1001}{2xy}\ge\frac{4}{\left(x+y\right)^2}+\frac{1001}{\frac{\left(x+y\right)^2}{2}}\ge4+2002=2006\)

Dấu "=" xảy ra khi  x = y = 1/2

25 tháng 10 2020

Ta có: \(\frac{x-y\sqrt{2021}}{y-z\sqrt{2021}}=\frac{m}{n}\inℚ\left(m,n\inℤ,n\ne0\right)\Rightarrow nx-ny\sqrt{2021}=my-mz\sqrt{2021}\)\(\Rightarrow nx-my=\left(ny-mz\right)\sqrt{2021}\)

Vì x, y, z, m, n là các số nguyên nên \(nx-my\inℤ\)và \(ny-mz\inℤ\)

Khi đó: \(nx-my=0\)và \(ny-mz=0\)suy ra \(\frac{m}{n}=\frac{y}{z}=\frac{x}{y}\Rightarrow y^2=xz\)

Theo đề bài thì \(x^2+y^2+z^2\)là số nguyên tố hay \(x^2+2y^2+z^2-y^2=x^2+2zx+z^2-y^2=\left(x+z\right)^2-y^2=\left(x+y+z\right)\left(x+z-y\right)\)là số nguyên tố 

Khi đó \(x+z-y=1\Leftrightarrow x+z=1+y\)

\(\Rightarrow x^2+z^2+2y^2=y^2+2y+1\Leftrightarrow\left(y-1\right)^2+x^2+z^2-2=0\)

Vì x, y, z là số nguyên dương nên x = y = z = 1

17 tháng 10 2020

Với \(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)=4\); mà \(4=2.2\)

Có ngay ĐK : \(\left(\sqrt{x}+1\right)\)và \(\left(\sqrt{y}+1\right)\)bằng 2.

\(x=1,y=1\)với TH \(\sqrt{1}=1\)

\(S=\frac{x^4}{y}+\frac{y^4}{x}\). Như phía trên :

\(x=1,y=1\)\(\Rightarrow S=\frac{1^4}{1}+\frac{1^4}{1}\Rightarrow S=1+1=2\)

17 tháng 10 2020

Chả ai giải theo cách trẻ trâu như bạn đâu (: 

24 tháng 10 2020

Trả lời nhanh câu hỏi này giùm tớ nào ?                                                                                                                                                                                                                                                                                                                                                                                    

3 tháng 6 2019

Câu 1 bạn dùng chia hết cho 13

Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8

Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1

Khi đó ta có x^2+3x-4=(x-1)(x+4)

đến đây thì dễ rồi

Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra

Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2

Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra

3 tháng 6 2019

Cảm ơn bạn Ninh Đức Huy.

17 tháng 10 2020

Từ \(x+y=1\)\(\Rightarrow\)

\(P=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\left(\frac{x}{\sqrt{y}}+\sqrt{y}\right)+\left(\frac{y}{\sqrt{x}}+\sqrt{x}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)

\(\ge2\sqrt{x}+2\sqrt{y}-\left(\sqrt{x}+\sqrt{y}\right)=\sqrt{x}+\sqrt{y}\)(1)

Có thể viết lại \(P=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}=\frac{1-y}{\sqrt{y}}+\frac{1-x}{\sqrt{x}}=\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)(2)

Từ (1) và (2) suy ra:

\(2S\ge\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{2}{\sqrt[4]{xy}}\ge\frac{2}{\sqrt{\frac{x+y}{2}}}=2\sqrt{2}\)\(\Rightarrow S\ge\sqrt{2}\)

Dễ thấy dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

12 tháng 10 2020

bn ê, tên đăng nhập của bn ghi là vuduyquang2007 có cái số 2007 (năm sinh của bn)

12 tháng 10 2020

\(x\left(1+x+x^2\right)=4y\left(y-1\right)\)

\(x.1+x.x+x.x^2=4y.y-4y.1\)

\(x+x^2+x^3=5y-4y\)

\(x+x^2+x^3=y\)

Thấy ngay \(x=0,y=0\)