K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2019

Bây giờ để tìm các giá trị của n để phân số đầu bài cho tối giản thì mình đi tìm các giá trị của n sẽ làm cho phân số đó nguyên

Giả sử \(\frac{n-1}{7n+4}\)nguyên thì \(\frac{7n-7}{7n+4}\)cũng phải nguyên

Do đó \(1-\frac{11}{7n+4}\)nguyên

\(\Rightarrow\)\(\frac{11}{7n+4}\)nguyên\(\Rightarrow7n+4\)là ước của 11\(\Rightarrow7n+4=\left\{-11;-1;1;11\right\}\)

Từ đây ta chọn ra \(n=\left\{1\right\}\)

Vậy n=1 thì \(\frac{n-1}{7n+4}\)là số nguyên

Như đã nói ở trên các giá trị tự nhiên của n thỏa mãn đề bài là các số tự nhiên khác 1

P/s Cách giải trên mình không biết có đúng không vì chúng chỉ là suy ra chớ không phải tương đương, nên có thể sẽ còn thiếu giá trị

10 tháng 2 2018

Mình sẽ tách ra làm từng ý, bạn nhớ k cho mình nhé!

a) Gọi d là ƯCLN ( 2n + 3; 4n + 1 )

Ta có: 2n + 3 chia hết cho d

=> 2 ( 2n + 3 ) chia hết cho d

=> 4n + 6 chia hết cho d

Mà: 4n + 1 chia hết cho d

=> ( 4n + 6 ) - ( 4n + 1 ) chia hết cho d

=> 5 chia hết cho d

=> d thuộc Ư ( 5 )

Giả sử phân số không tối giản:

=> 2n + 3 chia hết cho 5

=> 2n + 3 + 5 chia hết cho 5

=> 2n + 8 chia hết cho 5

=> 2 ( n + 4 ) chia hết cho 5

Vì ƯCLN ( 2; 5 ) = 1

=> n + 4 chia hết cho 5

=> n + 4 = 5k ( k thuộc N* )

=> n = 5k - 4

Vậy với n khác 5k - 4 ( k thuộc N* ) thì phân số bài cho sẽ tối giản.

10 tháng 2 2018

b) Gọi d = ƯCLN ( 3n + 2; 7n + 1 ) 

Ta có: 3n + 2 chia hết cho d => 7 ( 3n + 2 ) chia hết cho d => 21n + 14 chia hết cho d ( 1 )

          7n + 1 chia hết cho d => 3 ( 7n + 1 ) chia hết cho d => 21n + 3  chia hết cho d ( 2 )

Có: ( 1 ) chia hết cho d; ( 2 ) chia hết cho d

=> ( 1 ) - ( 2 ) chia hết cho d

=> 11 chia hết cho d

=> d thuộc Ư ( 11 )

Giả sử phân số không tối giản:

=> 7n + 1 chia hết cho 11

=> 7n + 1+ 55 chia hết cho 11

=> 7n + 56 chia hết cho 11

=> 7 ( n + 8 ) chia hết cho 11

Vì ƯCLN ( 7; 11 ) = 1

=> n + 8 chia hết cho 11

=> n + 8 = 11k ( k thuộc N* )

=> n = 11k - 8

Vậy với n khác 11k - 8 ( k thuộc N* ) thì phân số bài cho sẽ tối giản.

Mình làm cho bạn 2 câu, câu còn lại tương tự, bạn tự làm ha! ^v^

23 tháng 7 2019

Đặt \(\left(10n+9;15n+14\right)=d\)

\(\Rightarrow\hept{\begin{cases}10n+9⋮d\\15n+14⋮d\end{cases}\Rightarrow\hept{\begin{cases}3.\left(10n+9\right)⋮d\\2.\left(15n+14\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}30n+27⋮d\\30n+28⋮d\end{cases}}}\)

\(\Rightarrow\left(30n+28\right)-\left(30n+27\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow\frac{10n+9}{15n+14}\)là phân số tối giản với mọi n thuojc N

23 tháng 7 2019

gọi d là ƯC(10n + 9; 15n + 14) 

\(\Rightarrow\hept{\begin{cases}10n+9⋮d\\15n+14⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(10n+9\right)⋮d\\2\left(15n+14\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}30n+27⋮d\\30n+28⋮d\end{cases}}}\)

\(\Rightarrow30n+28-\left(30n+27\right)⋮d\)

\(\Rightarrow30n+28-30n-27⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\pm1\)

Vậy \(\frac{10n+9}{15n+14}\) là phân số tối giản với mọi n tự nhiên

20 tháng 6 2015

umk đây này

Phân số đã cho có dạng: a/2+a+n với a=1,2,3,...,2004.

UCLN(a;2+a+n)=1 do đó a;2+a+n nguyên tố cùng nhau. Do vậy 2+n là số nguyên tố với n nhỏ nhất

Do đó 2+n=2003 (Vì 2003 là số nguyên tố)

Vậy n=2001