Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo nhé:
a)
Để chia hết cho 2 thì và .
mà thì
còn thì luôn đúng.
Vậy để thì , hay và
b)
Để chia hết cho 5 thì và .
mà thì luôn đúng
còn thì .
Vậy để thì , hay và
c)
Để chia hết cho 10 thì và .
mà thì
còn thì .
Vậy để thì và ,
hay
Giải thích:
Số chia hết cho 2 là số chẵn có dạng
Số chia hết cho 5 là số tận cùng là 0 và 5 hay là số có dạng
Số chia hết cho 10 là số chia hết cho cả 2 và 5 nên có dạng là
THAM KHẢO nhé:
a)
Để chia hết cho 2 thì và .
mà thì
còn thì luôn đúng.
Vậy để thì , hay và
b)
Để chia hết cho 5 thì và .
mà thì luôn đúng
còn thì .
Vậy để thì , hay và
c)
Để chia hết cho 10 thì và .
mà thì
còn thì .
Vậy để thì và ,
hay
Giải thích:
Số chia hết cho 2 là số chẵn có dạng
Số chia hết cho 5 là số tận cùng là 0 và 5 hay là số có dạng
Số chia hết cho 10 là số chia hết cho cả 2 và 5 nên có dạng là
3n + 29 chia hết cho n + 3 <=> 20 chia hết chi n+3 <=> n+3 thuộc Ư(20)={1,2,4,5,10,20}
Với n + 3 = 1 => n không thuộc N (loại)
Với n + 3 = 2 => n không thuộc N (loại)
Với n + 3 = 4 => n = 1
Với n + 3 = 5 => n = 2
Với n+3 = 10 => n = 7
Với n + 3 = 20 => n = 17
3n + 29 chia hết cho n + 3 <=> 20 chia hết chi n+3 <=> n+3 thuộc Ư(20)={1,2,4,5,10,20}
Với n + 3 = 1 => n không thuộc N (loại)
Với n + 3 = 2 => n không thuộc N (loại)
Với n + 3 = 4 => n = 1
Với n + 3 = 5 => n = 2
Với n+3 = 10 => n = 7
Với n + 3 = 20 => n = 17
Ta có \(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
để A có giá trị nguyên thì 5 phải chia hết cho n-1 hay n-1 là ước của 5
Ư(5)={5,1,-1,-5}
\(\Rightarrow\)n={6,2,0,-4}
gọi số cần tìm là A,Ta có: A+2CHIA HẾT CHO 3,4,5,6 HAY A+2 là bội chung của 3,4,5,6
BCNN(3,4,5,6)=60
\(\Rightarrow A+2=60.n\Rightarrow n=1,2,3,4,.... \)
lần lượt thử các số n.
Ta thấy n=7 thì A=418 chia hết cho 11
vậy số nhỏ nhất là 418
a)\(3n+5⋮3n-1\Rightarrow6+3n-1⋮3n-1\)
Mà \(3n-1⋮3n-1\Rightarrow6⋮3n-1\)
\(\Rightarrow3n-1\inƯ\left(6\right)\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow3n\in\left\{-5;-2;-1;0;2;3;4;7\right\}\)
\(\Rightarrow n\in\left\{\frac{-5}{3};\frac{-2}{3};\frac{-1}{3};0;\frac{2}{3};1;\frac{4}{3};\frac{7}{3}\right\}\)
Mà \(n\in N\)
\(\Rightarrow n\in\left\{0;1\right\}\)
b)\(2n+3⋮2n-1\Rightarrow4+2n-1⋮2n-1\)
Mà \(2n-1⋮2n-1\Rightarrow4⋮2n-1\)
\(\Rightarrow2n-1\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow2n\in\left\{-3;-1;0;2;3;5\right\}\)
\(\Rightarrow n\in\left\{\frac{-3}{2};\frac{-1}{2};0;1;\frac{3}{2};\frac{5}{2}\right\}\)
Mà \(n\in N\)
\(\Rightarrow n\in\left\{0;1\right\}\)
Hok Tốt!
Lời giải:
Với mọi số tự nhiên $b$ thì $6b=3.2b\vdots 3$ nên để $n=5a+6b\vdots 3$ thì $5a\vdots 3$
Mà $5\not\vdots 3$ nên điều này xảy ra khi $a\vdots 3$
Vậy với mọi số tự nhiên $b$ và mọi số tự nhiên $a$ sao cho $a\vdots 3$ thì $n=5a+6b\vdots 3$