Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Ư\left(30\right)=\left\{1;2;3;5;6;10;15;30\right\}\\ \Rightarrow x=5\left(B\right)\\ B\left(8\right)=\left\{0;8;16;24;32;...\right\}\\ \Rightarrow x=24\left(B\right)\)
Vì \(\left(a,b\right)=30\) nên ta có: \(\hept{\begin{cases}a=30m\\b=30n\\\left(m,n\right)=1\end{cases}}\)
Mà \(a+b=360\)
\(\Rightarrow30m+30n=360\)
\(\Rightarrow30\left(m+n\right)=360\)
\(\Rightarrow m+n=12\)
Lại có: \(\left(m,n\right)=1\)
Ta có bảng sau:
m 1 11 5 7
n 11 1 7 5
a 30 330 150 210
b 330 30 210 150
Vậy \(\left(a;b\right)\in\left\{\left(30;330\right);\left(330;30\right);\left(150;210\right);\left(210;150\right)\right\}\).
1) 12 = 1.12 = 2.6 = 3.4 = 4.3 = 6.2 = 12.1
2) 12 = 1.12 = 2.6 = 3.4
Vậy (a; b) ∈ {(1; 12); (2; 6); (3; 4)}
3) 30 = 1.30 = 2.15 = 3.10 = 5.6 = 6.5 = 10.3 = 15.2 = 30.1
4) 30 = 30.1 = 15.2 = 10.3 = 6.5
Vậy (a; b) ∈ {(30; ); (15; 2); (10; 3); (6; 5)}
a, Ta có: 12 = 1 x 12; 2 x 6; 3 x 4
b, Ta có: 12 = 1 x 12; 2 x 6; 3x 4
Theo đề bài, ta có điều kiện: a < b
=> a ϵ {1; 2; 3}
=> b ϵ {12; 6; 4}
Vậy các cặp số (a; b) cần tìm là:
(a; b) ϵ {(1; 12); (2; 6); (3; 4)}
c, Ta có: 30 = 1 x 30; 2 x 15; 3 x 10; 5 x 6
d, Ta có: 30 = 1 x 30; 2 x 15; 3 x 10; 5 x 6
Theo đề bài, ta có điều kiện: a > b
=> a = 30; b = 1
=> a = 15; b = 2
=> a = 10; b = 3
=> a = 6; b = 5
Vậy ta có các cặp số (a; b) thỏa mãn đề bài là:
(a; b) ϵ {(30; 1); (15; 2); (10; 3); (6; 5}
- Ta có: a ≥ b ( a,b ∈ N )
ƯCLN ( a, b) = 16
⟹ a chia hết cho 16 ⟹ a = 16.m
⟹ b chia hết cho 16 ⟹ b = 16. n
(m, n là thương; m,n ∈ N, m ≥ n)
ƯCLN(m,n) = 1
⟹ a . b = ƯCLN.BCNN
mà a = 16. m
b = 16. n
Thay số: 16 . m . 16 . n = 16 . 240
16. m . 16. n = 3840
256. m. n = 3840
⟹ m. n = 3840 : 256 = 15
Ta có bảng sau :
m | ... | ... | ... |
n | ... | ... | ... |
a | ... | ... | ... |
b | ... | ... | ... |
⟹ Vậy (a,b) ∈ { (... , ...) ; (... , ....)}
a, Gọi hai số tự nhiên cần tìm là x và y
Ta có: 42 = 1 x 42; 2 x 21; 3 x 14; 6 x 7
Các cặp số (x; y) cần tìm là:
x; y ϵ {(1;42); (2; 21); (3; 14); (6; 7)}
b, Ta có: 30 = 1 x 30; 2 x 15; 3 x 10; 5 x 6
Theo đề bài, ta có điều kiện: a < b
=> a ϵ {1; 2; 3; 5}
=> b ϵ {6; 10; 15; 30}
Vậy các cặp số (a; b) cần tìm là:
(a; b) ϵ {(1; 30); (2; 15); (3; 10); (5; 6)}
Bài giải:
a) Giả sử 42 = a . b = b . a. Điều này có nghĩa là a và b là những ước của 42. Vì b = 42 : a nên chỉ cần tìm a. Nhưng a có thể là một ước bất kì của 42.
Nếu a = 1 thì b = 42.
Nếu a = 2 thì b = 21.
Nếu a = 3 thì b = 14.
Nếu a = 6 thì b = 7.
b) ĐS: a = 1, b = 30;
a = 2, b = 15;
a = 3, b = 10;
a = 5, b = 6.
Bài giải:
a) Giả sử 42 = a . b = b . a. Điều này có nghĩa là a và b là những ước của 42. Vì b = 42 : a nên chỉ cần tìm a. Nhưng a có thể là một ước bất kì của 42.
Nếu a = 1 thì b = 42.
Nếu a = 2 thì b = 21.
Nếu a = 3 thì b = 14.
Nếu a = 6 thì b = 7.
b) ĐS: a = 1, b = 30;
a = 2, b = 15;
a = 3, b = 10;
a = 5, b = 6.
Gọi (a, b) = d thì a = d.a', b = d.b', (a', b') = 1, do đó :
ab = d2 a′ b' ⇒ d . 6d = d2 a' b' ⇒ a' b' = 6 . Giả sử a ⩽ b thì a' ⩽ b' , ta có a' = 1, b' = 6 hoặc a' = 2, b' = 3.
k nha Nguyen Phuong Linh ^_^ =_=