Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/2 >hoặc = a/5 ( xảy ra giấu bằng với a=0)
b/3> hoặc = b/5 ( xảy randaaus bằng với a=0
Do đó : a/2 +b/3 = a/5 + b/5 chỉ trong trường hợp a=b=0
VD tổng nghịch đâỏ cảu ba số này là 2 thì:
Số lớn nhất là a, số nhỏ nhất là c.
Ta có: c ≤ b ≤ a (1)
Theo giả thiết : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) = 2 (2)
Do (1) nên 2 = \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ≤ \(\dfrac{3}{c}\)
Vậy c = 1
Thay vào (2) ta dc :\(\dfrac{1}{a}+\dfrac{1}{b}\) = 1 ≤ \(\dfrac{2}{b}\)
Vậy a = 2 từ đó b = 2
3 số cần tìm là 1; 2; 2.
\(\frac{52}{9}=5+\frac{1}{a+\frac{1}{b+\frac{1}{c}}}\)
\(\frac{52}{9}=5+\frac{7}{9}=5+\frac{1}{\frac{9}{7}}\)
\(=5+\frac{1}{1+\frac{2}{7}}\)
\(=5+\frac{1}{1+\frac{1}{\frac{7}{2}}}\)
\(=5+\frac{1}{1+\frac{1}{3+\frac{1}{2}}}\)
\(\Rightarrow a=1,b=3,c=2\)
ĐKXĐ: \(a\ne0;\)\(a+b\ne0;\)\(a+b+c\ne0\)
Vì 3 số a,b,c là 3 số tự nhiên
\(\Rightarrow\)\(\frac{1}{a}\ge a+b;\)\(\frac{1}{a}\ge\frac{1}{a+b+c}\)
\(\Rightarrow\)\(\frac{1}{a}+\frac{1}{a+b}+\frac{1}{a+b+c}\le\frac{1}{a}+\frac{1}{a}+\frac{1}{a}=\frac{3}{a}\)
\(\Rightarrow\)\(0< a\le3\)
Sau đó bn xét từng trường hợp a = 1,2,3 để giải biểu thức trên là xong nhé
Ta có :4/5=8/10=(1+2+5)/10=1/10+2/10+5/10=1/10+1/5+1/2.
Vì a,b,c có vai trò như nhau =>a=10;b=5;c=2
\(\frac{52}{9}=5+\frac{7}{9}=5+\frac{1}{1+\frac{2}{7}}=5+\frac{1}{1+\frac{1}{3+\frac{1}{2}}}\\ \)
(a;b;c) =(1;3;2)
a=b=c = 1 : ( 1+1+1)
a = =b=c = 1 : 3
a = b = c = 1/3
a=b=c = > 3
nha