Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10 . a + 10 . b + 2010 . c = \(\overline{207d}\)
10 . a + 10 . b + 10 . 201 . c = \(\overline{207d}\)
10 ( a + b + 201 . c ) = \(\overline{207d}\)
Vì : 10 ( a + b + 201 . c ) có tận cùng là chữ số 0 => d = 0
a + b + 201 . c = 207
Vì : 201 . c phải < 207 => c = 1
=> a + b = 207 - 201
=> a + b = 6
Ta có : a,b phải khác 0 và khác 1
Nên : + Nếu a = 2 => b = 4
+ Nếu a = 4 => b = 2
Vậy ....
\(10\times a+10\times b+2010\times c=\frac{ }{207d}\)
\(10\times\left(a+b+201\times c\right)=\frac{ }{207d}\)
Vì \(10\times\left(a+b+201\times c\right)\) có tận cùng là \(0\) nên \(\frac{ }{207d}\) \(=2070\). Do đó \(d=0\)
Cùng chia 2 vế cho \(10\), ta có:
\(a+b+201\times c=207\)
Vì \(201\times c< 207\) nên \(c=1\) ( \(c>0\) vì \(d=0\) )
Do đó: \(a+b=207-201=6\). Vì \(a\) và \(b\) đều \(\ne0\) và \(\ne1\) nên:
- Nếu \(a=2\) thì \(b=4\)
- Nếu \(a=4\) thì \(b=2\)
Vậy ta có hai cặp số thỏa mãn điều kiện của bài toán:
\(a=2;b=4;c=1;d=0\)
\(a=4;b=2;c=1;d=0\)
a, Ta có: 8 = 2 3 ; 10 = 2.5
BCNN(8; 10) = 2 3 .5 = 40
BC(8; 10) =B(40)= { 0; 40; 80; 120;………}
b, Ta có: 6 =2.3; 24= 2 3 . 3; 40 = 2 3 .5
BCNN( 6; 24; 40) = 2 3 .3. 5= 120
BC( 6; 24; 40)= B(120) ={ 0; 120; 240; 360….}
c, Ta có: 8 = 2 3 ; 15 = 3.5; 20 = 2 2 .5
BCNN(8; 15;20) = 2 3 .3.5 = 120
BC( 8; 15; 20)= B(120) ={ 0; 120; 240; 360….}
d, Ta có: 30 = 2.3.5; 45 = 3 2 .5
BCNN(30; 45) = 2. 3 2 .5 = 90
BC (30; 45) và nhỏ hơn 500 = { 0; 90; 180; 270; 360;480}
e, Ta có: a nhỏ nhất khác 0, biết rằng a ⋮ 15 và a ⋮ 18
=> a = BCNN (15; 18)
Có: 15 = 3.5; 18 = 2. 3 2
BCNN(15; 18) = 2. 3 2 .5 = 90
Vậy a = 90
f, Ta có: 63 = 3 2 .7; 35 = 5.7; 105 = 3.5.7
BCNN(63; 35; 105) = 3 2 .5.7 = 315
BC(63; 35; 105) và nhỏ hơn 1000 = { 0; 315; 630; 945}
a, Ta có: 8 = 2 3 ; 10 = 2.5
BCNN(8; 10) = 2 3 .5 = 40
BC(8; 10) =B(40)= { 0; 40; 80; 120;………}
b, Ta có: 6 =2.3; 24= 2 3 . 3; 40 = 2 3 .5
BCNN( 6; 24; 40) = 2 3 .3. 5= 120
BC( 6; 24; 40)= B(120) ={ 0; 120; 240; 360….}
c, Ta có: 8 = 2 3 ; 15 = 3.5; 20 = 2 2 .5
BCNN(8; 15;20) = 2 3 .3.5 = 120
BC( 8; 15; 20)= B(120) ={ 0; 120; 240; 360….}
d, Ta có: 30 = 2.3.5; 45 = 3 2 .5
BCNN(30; 45) = 2. 3 2 .5 = 90
BC (30; 45) và nhỏ hơn 500 = { 0; 90; 180; 270; 360;480}
e, Ta có: a nhỏ nhất khác 0, biết rằng a ⋮ 15 và a ⋮ 18
=> a = BCNN (15; 18)
Có: 15 = 3.5; 18 = 2. 3 2
BCNN(15; 18) = 2. 3 2 .5 = 90
Vậy a = 90
f, Ta có: 63 = 3 2 .7; 35 = 5.7; 105 = 3.5.7
BCNN(63; 35; 105) = 3 2 .5.7 = 315
BC(63; 35; 105) và nhỏ hơn 1000 = { 0; 315; 630; 945}
Giả sử a>b>c>d thì số lớn nhất là abcd, nhỏ nhất là dcba
abcd
+ dcba
---------------------------
11330
Đối chiếu cột đầu với cuối ta thấy a+d=10 ( nhớ 1 là bằng 11, cột đầu đó )
c+b=12
a+b+c+d=12+10=22
giả sử a > b> c > d khi đó ta có số tự nhiên lớn nhất là abcd và số tự nhiên nhỏ nhất là dcba => abcd + dcba = 11330 suy ra ta có a + d = 10 và b+ c =12 vậy a+b+c+d = 10+12 = 22