Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8a-9b=31
8a=9b+31
\(a=\frac{9b+31}{8}\)
\(\frac{a}{b}=\frac{\frac{9b+31}{8}}{b}=\left(9+\frac{31}{b}\right):8=\frac{9}{8}+\frac{31}{8b}\)
Ko có a/b thỏa mãn vì a/b>1 ( có 9/8 >1 lại cộng thêm 31/8b) mà 23/29<1
\(\hept{\begin{cases}\frac{11}{17}< \frac{a}{b}< \frac{23}{29}\\8a-9b=31\end{cases}}\)
\(=>\hept{\begin{cases}17a>11b\\29a< 23b\end{cases}}\)
\(=>8a>5\frac{3}{17}b\)
\(-11\frac{8}{23}a< -9b\)
\(=>8a-11\frac{8}{23}a< 8a-9b=31< 8a+8a\)
\(=>-3\frac{8}{23}a< 31< 16a\)
\(=>0< a< 0,5\)
Vậy ko có số tự nhiên a,b nào thỏa mãn đề bài
hôm nay mình thi, mình tìm ra là a=41; b=50, bn mik ra là a=17; b=23. Cả 2 đều đúng sao ý
tìm các số nguyên a ,b thỏa mãn điều kiện:\(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}và8b-9a=31\)
Gọi số hàng chục là a
Số hàng đơn vị là b
Số cần tìm là 10.a+b
tổng các chữ số là a+b
theo giả thiêt
10a+b chia a+b được 2 dư 7 10a+b là số bị chia
a+b là số chia
Vậy 10a+b = 2(a+b) +7
Kèm theo điều kiện
a là số tự nhiên có 1 chữ sô từ 1 đến 9 (1)
b là số tự nhiên có 1 chữ sô từ 0 đến 9 (2)
a+b >7 điều kiện số chia lớn hơn số dư (3)
Từ 10a+b = 2(a+b) +7
=> 10a+b = 2a+2b +7
=> 8a = 7+b
=> a = (7+b) : 8
Vì a là số tự nhiên nên
7+b phải chia hết cho 8
7+b có thể nhận các giá trị 8 , 16, 24, 32 ,40 v..v
Nếu ----7+b =8 => b=1
a=1 Loại vì a+b=2 <7 Vi phạm điều (3) ----7+b = 16 => b= 9 a= 2
Thỏa mãn toàn bộ điều kiện .
Số cần tìm là 10x2+9 =29 ----7+b = 24 => b= 17 a= 3 Loại vì b có 2 chữ số theo điều kiện (2 )
Không xét b+7 = 32, 40,48 v..v nữa vì b+7 càng to thì b càng có 2 chữ số hoặc hơn
Đáp Số : 29
Giải:
Ta biết: \(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\) và \(8b-9a=31\) \(\left(a;b\in N\right)\)
Theo đề bài: \(8b-9a=31\)
\(\Rightarrow b=\dfrac{31+9a}{8}=\dfrac{32-1+8a+a}{8}=\left[\left(4+a\right)+\dfrac{a-1}{8}\right]\in N\)
\(\Leftrightarrow\dfrac{a-1}{8}\in N\)
\(\Leftrightarrow\left(a-1\right)⋮8\)
\(\Leftrightarrow a=8k+1\left(k\in N\right)\)
Khi đó:
\(b=\dfrac{31+9.\left(8k+1\right)}{8}=9k+5\)
\(\Rightarrow\dfrac{11}{17}< \dfrac{8k+1}{9k+5}< \dfrac{23}{29}\)
\(\Leftrightarrow\left\{{}\begin{matrix}11.\left(9k+5\right)< 17.\left(8k+1\right)\Leftrightarrow k>1\\29.\left(8k+1\right)< 23.\left(9k+5\right)\Leftrightarrow k< 4\end{matrix}\right.\)
\(\Rightarrow1< k< 4\)
\(\Rightarrow k\in\left\{2;3\right\}\)
Với \(\left[{}\begin{matrix}k=2\Rightarrow\left\{{}\begin{matrix}a=17\\b=23\end{matrix}\right.\\k=3\Rightarrow\left\{{}\begin{matrix}a=25\\b=32\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(a;b\right)=\left(17;23\right);\left(25;32\right)\)
Điều kiện 11/17 > 13/29 có ý nghĩa gì bạn nhỉ?