K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 1 2021

\(y\ge0\)

\(y^2=x^2-2x+2\)

\(\Leftrightarrow y^2=\left(x-1\right)^2+1\)

\(\Leftrightarrow y^2-\left(x-1\right)^2=1\)

\(\Leftrightarrow\left(y-x+1\right)\left(y+x-1\right)=1\)

Pt ước số, bạn tự lập bảng

16 tháng 9 2017

ĐK : \(x;y\in Z;y\ge0\)

\(\sqrt{x^2-2x+13}=y\)

\(\Leftrightarrow x^2-2x+13=y^2\)

\(\Leftrightarrow\left(x^2-2x+1\right)+12=y^2\)

\(\Leftrightarrow\left(x-1\right)^2+12=y^2\)

\(\Leftrightarrow\left(x-1\right)^2-y^2=-12\)

\(\Leftrightarrow\left(x-y-1\right)\left(x+y-1\right)=-12\) đến đây lm tiếp

17 tháng 9 2017

Làm tiếp hộ mk !!!! xem mk làm có đúng ko ><

4 tháng 6 2018

a/ ta có: 

\(x\sqrt{2y-1}+y\sqrt{2x-1}=\sqrt{x}.\sqrt{2xy-x}+\sqrt{y}.\sqrt{2xy-y}\)

\(\le\frac{x+2xy-x}{2}+\frac{y+2xy-y}{2}=2xy\)

Dấu = xảy ra khi ...

4 tháng 6 2018

Khi gì

7 tháng 7 2016

1./ Với mọi y nguyên thì: 4y - 1 nguyên và không phải số chính phương.

(vì ngược lại nếu 4y - 1 = m2 => m lẻ => 4y - 1 = (2k + 1)2 => 4y = 4k2 + 4k + 2. VT chia hết cho 4, VP không chia hết cho 4).

=> \(\sqrt{4y-1}\)là 1 số vô tỷ.

2./ Viết PT trở thành: \(\frac{11x}{5}-3y-2=\sqrt{2x+1}-\sqrt{4y-1}\)(2)

Đặt \(A=\frac{11x}{5}-3y-2\)(2) trở thành: \(A+\sqrt{4y-1}=\sqrt{2x+1}\). Bình phương 2 vế:

\(A^2+4y-1+2A\sqrt{4y-1}=2x+1\)

\(\Rightarrow2A\sqrt{4y-1}=2x+2-A^2-4y\)(3)

VT(3) là số vô tỷ để "=" VP(3) là 1 số hữu tỷ thì A = 0.

3./ Do đó: \(\sqrt{4y-1}=\sqrt{2x+1}\Rightarrow2x+1=4y-1\Rightarrow x=2y-1\)

Và: \(0=\frac{11x}{5}-3y-2\Rightarrow11\left(2y-1\right)-15y-10=0\Rightarrow y=3\Rightarrow x=5\).

4./ Phương trình có nghiệm nguyên duy nhất x = 5; y = 3.

4 tháng 9 2016

Kho qua!

4 tháng 9 2016

toan lop 9 kho dui

ban dua cau hoi nay len 24h di

25 tháng 4 2015

Tu de bai suy ra 2y+2x=xy<=>...<=>y(2-x)= -2x<=>y=2x/(x-2)<=>y=(2x-4+4)/(x-2)<=>y=2+4/(x-2)

vi x la so nguyen Dưỡng nen x-2 la so nguyen  duong va la ước cua 4 => x-2 =1 hoặc x-2= 4 => x=3 hoac x=6 

Voi x=3 => y= 6

voi x=6=> y=3

vay cac cap so nguyen duong (x;y) can tim la (3;6); (6;3)

26 tháng 4 2015

.....

Sau khi chi ra x-2 la uoc nguyen duong cua 4

 Co 3  Truong hop

x-2 =1; x-2=2;x-2=4

Tu do tinh duoc x=3;x=4;x=6. Suy ra cac gia tri tuong ung cua y

co 3 cap so nguyen duong x, y can Tim:(3;6);(4 ;4);(6;3)

2 tháng 7 2017

Vì  \(x+y+z=2\)

Ta có  \(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x^2+xy\right)+\left(xz+yz\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

\(\le\frac{x+y+x+z}{2}=\frac{2x+y+z}{2}\)

Tương tự  \(\sqrt{2y+zx}\le\frac{x+2y+z}{2}\)  và  \(\sqrt{2z+xy}\le\frac{x+y+2z}{2}\)

Do đó  \(P\le\frac{2x+y+z}{2}+\frac{x+2y+z}{2}+\frac{x+y+2z}{2}=\frac{4\left(x+y+z\right)}{2}=\frac{4.2}{2}=4\)

Vậy  \(P\le4\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}x+y=x+z\\y+x=y+z\\z+x=z+y\end{cases}}\)  và x+y+z=2   \(\Leftrightarrow\)  \(x=y=z=\frac{2}{3}\)

16 tháng 6 2020

Ai giúp em với ạ

16 tháng 6 2020

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...