Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(5x^2+3y^2+4xy-2x+8y+8=A\)
ta có \(5x^2+3y^2+4xy-2x+8y+8< 0\)
<=>\(\left(2x+y\right)^2+\left(x-1\right)^2+2\left(y+2\right)^2< 1\)
vì x,y là số nguyên nên A cũng nguyên
mà A<1 nên A=0 (vì A là toonngr của 3 số chính phương)
=>\(\hept{\begin{cases}2x+y=0\\x-1=0\\y+2=0\end{cases}}\)
bạn tự giải nha
sai sai ở đâu đấy anh bạn, đây là phương trình chứ đâu có liên quan đến bất đẳng thức đâu.
Ta có: \(x^2+4y^2+x=4xy+2y+2\)
\(\Rightarrow x^2-4xy+4y^2+x-2y=2\)
\(\Rightarrow\left(x-2y\right)^2+\left(x-2y\right)=2\)
\(\Rightarrow\left(x-2y\right)\left(x-2y+1\right)=2\)
Tìm các TH
Mặt khác : \(4x^2+4xy+y^2=2x+y+56\)
\(\Rightarrow\left(2x+y\right)^2-\left(2x+y\right)=56\)
\(\Rightarrow\left(2x+y\right)\left(2x+y-1\right)=56\)
Tìm các TH
\(3x^2+y^2+4xy=5x+2y+1\)
\(\Leftrightarrow3x^2+x\left(4y-5\right)+\left(y^2-2y-1\right)=0\left(1\right)\)
Coi phương trình (1) là phương trình ẩn x tham số y, ta có:
\(\Delta=\left(4y-5\right)^2-3.4.\left(y^2-2y-1\right)\)
\(=16y^2-40y+25-12y^2+24y+12\)
\(=4y^2-16y+37\)
Để phương trình (1) có nghiệm nguyên thì \(\Delta\) phải là số chính phương hay \(\Delta=4y^2-16y+37=a^2\) (a là số tự nhiên).
\(\Rightarrow4y^2-16y+16+21=a^2\)
\(\Rightarrow a^2-\left(2y-4\right)^2=21\)
\(\Rightarrow\left(a-2y+4\right)\left(a+2y-4\right)=21\)
\(\Rightarrow a-2y+4;a+2y-4\) là các ước số của 21.
Với \(y\ge2\Rightarrow a-2y+4\le a+2y-4\) và \(a+2y-4\ge0\) Lập bảng:
a-2y+4 | 1 | 3 |
a+2y-4 | 21 | 7 |
a | 11 | 5 |
y | 7 | 3 |
Với \(y\ge2\Rightarrow a-2y+4\le a+2y-4\) và \(a+2y-4\ge0\) Lập bảng:
a-2y+4 | 21 | 7 |
a+2y-4 | 1 | 3 |
a | 11 | 5 |
y | -3(loại vì y>0) | 1 |
Với a=11, y=7. Phương trình (1) có 2 nghiệm:
\(x_1=\dfrac{-\left(4.7-5\right)+\sqrt{11^2}}{6}=-2\) (loại vì x>0)
\(x_2=\dfrac{-\left(4.7-5\right)-\sqrt{11^2}}{6}=-\dfrac{17}{3}\left(loại\right)\)
Với \(a=5;y=3\). Phương trình (1) có 2 nghiệm:
\(x_1=\dfrac{-\left(4.3-5\right)+\sqrt{5^2}}{6}=-\dfrac{1}{3}\left(loại\right)\)
\(x_2=\dfrac{-\left(4.3-5\right)-\sqrt{5^2}}{6}=-2\) (loại vì x>0)
Với \(a=5;y=1\). Phương trình (1) có 2 nghiệm:
\(x_1=\dfrac{-\left(4.1-5\right)+\sqrt{5^2}}{6}=1\)
\(x_2=\dfrac{-\left(4.1-5\right)-\sqrt{5^2}}{6}=-\dfrac{2}{3}\left(loại\right)\)
Vậy x,y nguyên dương thỏa mãn phương trình trên là \(x=y=1\)
cho mình hỏi sao để nó có nghiệm nguyên khi nó là số chính phương thế bạn
Đặt x = -2y + k (k \(\inℤ\))
Ta có x2 + 8y2 + 4xy - 2x - 4y = 4
<=> (-2y + k)2 + 8y2 + 4y(-2y + k) - 2(-2y + k) - 4y = 4
<=> k2 + 4y2 - 2k = 4
<=> (k - 1)2 + (2y)2 = 5 (*)
Dễ thấy (2y)2 \(⋮4\) (**)
Với y,k \(\inℤ\) kết hợp (*) ; (**) ta được
\(\left\{{}\begin{matrix}\left(k-1\right)^2=1\\\left(2y\right)^2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}k=0\\k=2\end{matrix}\right.\\y=\pm1\end{matrix}\right.\)
Vậy (k,y) = (0;1) ; (0;-1) ; (2;1) ; (2;-1)
mà x = k - 2y nên các cặp (x;y) thỏa là (-2;1) ; (2;-1) ; (0;1) ; (4;-1)