K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a.x=1;y=9\)

\(b. (x-6). (y+2)=7\)

Ta lập bảng :

\(x-6\)\(1\)\(-1\)\(7\)\(-7\)
\(y+2\)\(7\)\(-7\)\(1\)\(-1\)
\(x \)\(7\)\(5\)\(13\)\(-1\)
\(y\)\(5\)\(-9\)\(-1\)\(-3\)

\(Vậy :..........\)

2 tháng 3 2020

a) Vì x, y nguyên mà x.y = 9 nên x, y thuộc Ư(9)

Mà x< y. Ta có bảng sau

x1-9
y9-1

Vậy (x,y) \(\in\){(1;9) , ( -9; -1) }

b) vì x, y nguyên suy ra x-6 , y + 2 nguyên

mà (x-6). ( y+2) =7

nên  (x-6), ( y+2) thuộc Ư(7) .Ta lập bảng như sau

x-61-17-7
y+27-71-1
x7513-1
y5-9-1-3

Tự kết luận nhé

12 tháng 11 2023

Bài 1

a) (x + 3)(x + 2) = 0

x + 3 = 0 hoặc x + 2 = 0

*) x + 3 = 0

x = 0 - 3

x = -3 (nhận)

*) x + 2 = 0

x = 0 - 2

x = -2 (nhận)

Vậy x = -3; x = -2

b) (7 - x)³ = -8

(7 - x)³ = (-2)³

7 - x = -2

x = 7 + 2

x = 9 (nhận)

Vậy x = 9

12 tháng 11 2023

Thanks

 

20 tháng 2 2017

Ta có 6 = 3.2 - (-3).(-2);

Trường hợp 1. x - 2 = 2; y +1 = 3. Tìm được x = 4; y = 2.

Tương tự với các trường hợp khác, vậy tìm được các cặp

(x; y) = {(-4;-2), (-1;-3), (0;-4), (1;-7), (4;2), (5;1), (8;0)}

4 tháng 9 2017

20 tháng 12 2019

Ta có 6 = 3.2 - (-3).(-2);

Trường hợp 1. x - 2 = 2; y +1 = 3. Tìm được x = 4; y = 2.

Tương tự với các trường hợp khác, vậy tìm được các cặp

(x; y) = {(-4;-2), (-1;-3), (0;-4), (1;-7), (4;2), (5;1), (8;0)}

21 tháng 12 2021

\(\left(x,y\right)\in\left\{\left(-1;7\right)\left(-7;1\right)\right\}\)

21 tháng 12 2021

\(\left(x,y\right)\in\left\{\left(-1;7\right);\left(-7;1\right)\right\}\)

Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.

28 tháng 2 2021

\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)

Vậy \(\left(x;y\right)=\left(5;-2\right)\)