K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2021

a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương. - Tìm trên Google

18 tháng 2 2021

Bạn học trên olm à

Nguyễn Thị Thuỳ Linh CTV

HQ
Hà Quang Minh
Giáo viên
1 tháng 8 2023

Gọi 3 số lần lượt là n; n+1; n+2

3 tích lần lượt là: 

\(n\left(n+1\right)=n^2+n\\ n\left(n+2\right)=n^2+2n\\ \left(n+1\right)\left(n+2\right)=n^2+3n+2\)

Theo đề bài, ta có:

\(n^2+n+n^2+2n+n^2+3n+2=242\\ \Leftrightarrow3n^2+6n-240=0\\ \Leftrightarrow3\left(n-8\right)\left(n+10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}n=8\\n=-10\end{matrix}\right.\)

Vậy bộ 3 số đó là \(\left\{8;9;10\right\},\left\{-10;-9;-8\right\}\)