K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 2 2021

\(\Leftrightarrow x^2-1=2y^2\)

Do vế phải chẵn \(\Rightarrow\) vế trái chẵn \(\Leftrightarrow x\) lẻ

\(\Rightarrow x=2k+1\)

Pt trở thành: \(\left(2k+1\right)^2-1=2y^2\Leftrightarrow2\left(k^2+k\right)=y^2\)

Vế trái chẵn \(\Rightarrow\) vế phải chẵn \(\Rightarrow y^2\) chẵn \(\Rightarrow y\) chẵn

\(\Rightarrow y=2\)

\(\Rightarrow x^2-9=0\Rightarrow x=3\)

Vậy \(\left(x;y\right)=\left(3;2\right)\)

22 tháng 11 2017

 Ta thấy nếu x lẻ => VT chẵn => z chẵn ko phải số nguyên tố 

Vậy x chỉ là số chẵn mà nguyên tố => x= 2 

Với y=2 => z= 5 thỏa đk đề bài 

Nếu y>2 => y lẻ (vì y nguyên tố) 

=> y =2k +1 
=> 2^(2k+1) +1 = 2.4^k + 1 = 2.(3p+1) + 1 = 3m 

Như vậy khi x=2 và y nguyên tố > 2 thì VT luôn chia hết cho 3 
=>z chia hết cho 3 không thỏa đk 

Vậy x=y=2; z= 5 là duy nhất 

3 tháng 11 2017

x = 2 

y = 2

z = 5

27 tháng 12 2015

câu hỏi tương tự nha bạn

NV
24 tháng 12 2021

\(\Leftrightarrow x^2-1=6y^2\)

Do \(6y^2\) chẵn và 1 lẻ \(\Rightarrow x^2\) lẻ \(\Rightarrow x\) lẻ \(\Rightarrow x=2k+1\)

\(\Rightarrow\left(2k+1\right)^2-1=6y^2\)

\(\Rightarrow4\left(k^2+k\right)=6y^2\)

\(\Rightarrow2\left(k^2+k\right)=3y^2\)

Do 2 chẵn  \(\Rightarrow3y^2\) chẵn \(\Rightarrow y^2\) chẵn \(\Rightarrow y\) chẵn

Mà y là SNT \(\Rightarrow y=2\)

Thay vào pt đầu: 

\(x^2+1=6.2^2+2\Rightarrow x=5\)

Vậy (x;y)=(5;2)

25 tháng 3 2022

Ta có: \(x^2-1=2y^2\)

Vì \(2y^2\) là số chẵn ⇒\(x^2\) là số lẻ ⇒ x là số lẻ

⇒ x= 2k+1

Ta có: \(\left(2k+1\right)^2-1=2y^2\)

⇒ \(4\left(k^2+k\right)=2y^2\)

\(2\left(k^2+k\right)=y^2\)

Vì 2 là số chẵn ⇒ \(y^2\) là số chẵn ⇒ y là số chẵn 

Mà y là số nguyên tố ⇒ y = 2

Ta lại có: \(x^2-1=2.2^2\)

⇒ \(x^2-1=8\)

\(x^2=8+1=9\)

⇒ x= -3 hoặc 3 

Vì x là số nguyên tố nên x =3

Vậy x=3, y=2

29 tháng 10 2017

 Ta thấy nếu x lẻ => VT chẵn => z chẵn ko phải số nguyên tố 

Vậy x chỉ là số chẵn mà nguyên tố => x= 2 

Với y=2 => z= 5 thỏa đk đề bài 

Nếu y>2 => y lẻ (vì y nguyên tố) 

=> y =2k +1 
=> 2^(2k+1) +1 = 2.4^k + 1 = 2.(3p+1) + 1 = 3m 

Như vậy khi x=2 và y nguyên tố > 2 thì VT luôn chia hết cho 3 
=>z chia hết cho 3 không thỏa đk 

Vậy x=y=2; z= 5 là duy nhất 

10 tháng 3 2018

Trả lời

 Ta thấy nếu x lẻ => VT chẵn => z chẵn ko phải số nguyên tố 

Vậy x chỉ là số chẵn mà nguyên tố => x= 2 

Với y=2 => z= 5 thỏa đk đề bài 

Nếu y>2 => y lẻ (vì y nguyên tố) 

=> y =2k +1 
=> 2^(2k+1) +1 = 2.4^k + 1 = 2.(3p+1) + 1 = 3m 

Như vậy khi x=2 và y nguyên tố > 2 thì VT luôn chia hết cho 3 
=>z chia hết cho 3 không thỏa đk 

Vậy x=y=2; z= 5 là duy nhất 

Với x=2; y=5 thì 2^5 + 1 =33 đâu phải số nguyên tố.... 



 

24 tháng 12 2021

giúp mik ik please