K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2023

Giải bằng phương pháp đánh giá em nhé.

+ Nếu p = 2 ta có: 

2 + 8 = 10 (loại)

+ Nếu p = 3 ta có:

3 + 8 = 11 (nhận)

4.3 + 1 = 13 (nhận)

+ Nếu p = 3\(k\) + 1 ta có: 

p + 8 = 3\(k\) + 1 + 8 = 3\(k\) + 9  = 3(\(k+3\)) là hợp số (loại)

+ nếu p = 3\(k\) + 2  ta có:

4p + 1  = 4(3\(k\) + 2) + 1 = 12\(k\) + 9 = 3\(\left(4k+3\right)\) là hợp số loại

Vậy p = 3 là giá trị thỏa mãn đề bài

Kết luận: số nguyên tố p sao cho p + 8 và 4p + 1 đều là các số nguyên tố đó là 3

 

 

13 tháng 10 2017

có tất cả các số nguyên tố là:2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

2 là số chẵn duy nhất mà số chẵn +số chẵn sẽ ra số chẵn nên loại

Nếu B=3 suy ra 3+2=5:3+4=7(chọn)

Nếu B=5 suy ra 5+2=7:5+4=9(Loại)

Tiếp tục đến 83 nhé

Dáp số là 3 và 11

11 tháng 10 2020

ua n =1 ha cho 1 mu 5 bang 1 roi 1+1+1= 3la so nguyen to a

11 tháng 10 2020

1+1+1=3 la so nguyen to

22 tháng 11 2015

a)

 p = 2 => p + 10 = 12 là hợp số => loại

p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn

Nếu p > 3 , p có thể có dạng

+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1

+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2

Vậy p = 3 

22 tháng 11 2015

b)

p=2=>6+p=6+2=8 là hợp số=>loại p = 2

p=3

=>6+p=6+3=9 là hợp số =? loại p=3

p=5

=>p+2=5+2=7

p+6=5+6=11

p+8=5+8=13

p+14=5+14=19 

đều là snt => p =5 thỏa mãn

nếu p>5

=>p có dạng :

p=5k+1

=>p+14=5k+1+14=5k+15 =5k+5.3=5(k+3) chia hết cho 5 là hợp số => loại p=5k+1

p=5k+2

=>p+8=5k+2+8=5k+10=5k+2.5=5(k+2) chia hết cho 5 là hợp số => loại p=5k+2

Vậy p=5

11 tháng 9 2017

Số nguyên tố là số tự nhiên chỉ chia hết cho 1 và chính nó. ... Số 0 và 1 không được coi là số nguyên tố. Cácsố nguyên tố từ 2 đến 100: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

11 tháng 9 2017

Hợp số là 1 số có thể chia được ít nhất 3 số

Số nguyên tố là số chỉ chia hết cho 1 và chính nó

Bài này có  trong sách giáo khoa mà