Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(n^2+5n+9=n^2+3n+2n+9=n.\left(n+3\right)+2n+9\)
Vì n(n+3) chia hết cho n+3 => 2n+9 chia hết cho n+3
Vì 2n+9 chia hết cho n+3
Vì n+3 chia hết cho n+3 => 2(n+3) chia hết cho n+3 => 2n+6 chia hết cho n+3
=> 2n+9 - (2n+6) chia hết cho 2n+3
=> 3 chia hết cho 2n+3
=> \(2n+3\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\Rightarrow n\in\left\{-1;-2;2;-5\right\}\)
k nha bạn
n2+5n+9 chia hết n+3
suy ra: n.n+3n-3n+5n+9 chia hết n+3
suy ra: n.(n+3)+2n+6+3 chia hết n+3
vì n.(n+3)+2n+6 chia hết n+3
suy ra: 3 chia hết n+3
suy ra: n+3 thuộc Ư(3)= 1;-1;3;-3
suy ra: n=-2;-4;0;-6
n2+5n+9 là bội của n+3
=>n2+3n+2n+6+3 là bội của n+3
=>n(n+3)+2(n+3)+3 là nội của n+3
=>(n+2)(n+3)+3 là bội của n+3
Mà (n+2)(n+3) là bội của n+3
=>3 là bội của n+3
=>n+3\(\in\)Ư(3)
=>n+3\(\in\){-3;-1;1;3}
=>n\(\in\){-6;-4;-2;0}
Vậy n\(\in\){-6;-4;-2;0} thì n2+5n+9 là bội của n+3
Nếu tôi ngu thì cậu thử làm đi?Cả cách làm cụ thể nhé!
Vì n2 + 5n + 9 là bội của n + 3
=> n2 + 5n + 9 chia hết cho n + 3
=> (n2 + 3n) + (2n + 6) + 3 chia hết cho n + 3
=> n.(n + 3) + 2.(n + 3) + 3 chia hết cho n + 3
=> (n + 3).(n + 2) + 3 chia hết cho n + 3
Do (n + 3).(n + 2) chia hết cho n + 3 => 3 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1 ; 3 ; -3}
=> n thuộc {-2 ; -4 ; 0 ; -6}
Vậy n thuộc {-2 ; -4 ; 0 ; -6}
Ủng hộ mk nha ♡_♡^_-
n2+5n+9 = n2+3n+2n+6+3=n.(n+3)+2.(n+3)+3
Để n2+5n+9 là bội của n+3 thì:
3 chia hết cho n+3
=> n+3 thuộc Ư(3)={1;-1;3;-3}
=>n=-2;-4;0;-6
Ta có: n2+5n+9 chia hết cho n+3
=> n2+3n+2n+6+3 chia hết cho n+3
=> n(n+3)+2(n+3)+3 chia hết cho n+3
=> (n+2)(n+3)+3 chia hết cho n+3
Mà (n+2)(n+3) chia hết cho n+3
=> 3 chia hết cho n+3
=> n+3 thuộc Ư(3)={-3;-1;1;3}
Ta có bảng:
Vậy n thuộc {-6;-4;-2;0} thì n2+5n+9 là bội của n+3
\(n^2+5n+9=n^2+3n+2n+9=n\left(n+3\right)+2n+9⋮n+3\)
\(\Rightarrow2n+9⋮n+3\Leftrightarrow2\left(n+3\right)+3⋮n+3\Rightarrow3⋮n+3\)
\(\Rightarrow n+3\inƯ\left(3\right)=\left[-3;-1;1;3\right]\)
\(\Rightarrow n=\left[-6;-4;-2;0\right]\)