K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2019

Ta có: P = \(\frac{2n-1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)

Để P \(\in\)Z <=> 1 \(⋮\)n - 1

=> n - 1 \(\in\)Ư(1) = {1; -1}

=> n \(\in\){2; 0}

Vậy ...

5 tháng 12 2019

\(P=\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)

Vì \(2\inℤ\)\(\Rightarrow\)Để \(P\inℤ\)thì \(\frac{1}{n+1}\inℤ\)

\(\Rightarrow1⋮\left(n-1\right)\)\(\Rightarrow n-1\inƯ\left(1\right)=\pm1\)\(\Rightarrow n\in\left\{0;2\right\}\)

Vậy \(n\in\left\{0;2\right\}\)

1 tháng 7 2019

Q nguyên khi : 

3|n| + 1 ⋮ 3|n| + 1 

=> 3|n| - 1 + 2 ⋮ 3|n| + 1

=> 2 ⋮ 3|n| + 1

=> 3|n| + 1 thuộc Ư(2) mà n là số nguyên

=> 3|n| + 1 thuộc {-1; 1; -2; 2}

=> 3|n| thuộc {-2; 0; -3; 1}

=> |n| thuộc {0; -1} vì |n| > 0

=> n = 0

vậy_

23 tháng 1 2020

\(ĐK:x\ne1\)

Để \(A=\frac{5}{x-1}\)là số nguyên

\(\Leftrightarrow5⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Leftrightarrow x\in\left\{0;2;-4;6\right\}\)

Để \(B=\frac{x+2}{x-1}\)là số nguyên

\(\Leftrightarrow x+2⋮x-1\)

\(\Leftrightarrow x-1+3⋮x-1\)

\(\Leftrightarrow3⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow x\in\left\{0;2;-2;4\right\}\)

Vậy để A và B cùng là số nguyên thì \(x\in\left\{0;2\right\}\)

23 tháng 1 2020

Trả lời :

Mình làm thế này nè sai thì thuii nhé :)

a ) Để  \(\frac{5}{x-1}\)  \(\varepsilon\) \(ℤ\) thì => 5 phải chia hết cho ( x-1 ) hay x - 1 = Ư(5) = { - 1 ; 1 ; 5 ; -5 }

Ta có bảng sau :

x-1-5-115
x-4026

b ) Để \(\frac{x+2}{x-1}\) \(\varepsilon\) \(ℤ\) thì \(\frac{3}{x-2}\) phải \(\varepsilon\) \(ℤ\) => 3 phải chia hết cho ( x - 1 ) và x \(\ne\) 1

+ => x - 1 = Ư(3) = { 1 ; - 1 ; 3 ; -3 }

Chúc bạn học tốt <3

30 tháng 11 2018

a)  x=2 :y thuộc {9: -9 }

b) đặt k nha bạn kq = 4/ 5

k nha

30 tháng 11 2018

1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................

31 tháng 5 2018

Bài 1: 

a) ta có: \(A=\frac{2n-1}{n-3}=\frac{2n-6+5}{n-3}=\frac{2.\left(n-3\right)+5}{n-3}=\frac{2.\left(n-3\right)}{n-3}+\frac{5}{n-3}\)\(=2+\frac{5}{n-3}\)

Để A có giá trị nguyên

\(\Rightarrow\frac{5}{n-3}\in z\)

\(\Rightarrow5⋮n-3\Rightarrow n-3\inƯ_{\left(5\right)}=\left(5;-5;1;-1\right)\)

nếu n-3 = 5 => n = 8 (TM)

n-3 = -5 => n= -2 (TM)

n-3 = 1 => n = 4 (TM)

n-3 = -1 => n = 2 (TM)

KL: \(n\in\left(8;-2;4;2\right)\)

b) ta có: \(A=2+\frac{5}{n-3}\) ( pa)

Để A đạt giá trị lớn nhất

=>  \(\frac{5}{n-3}\le5\)

Dấu "=" xảy ra khi

\(\frac{5}{n-3}=5\)

\(\Rightarrow n-3=5:5\)

\(n-3=1\)

\(n=4\)

KL: n =4 để A đạt giá trị lớn nhất

Bài 2 bn làm tương tự nha!

13 tháng 11 2015

a, \(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
=>n-1 là ước của 5 => n=6,0,-4,2

3 tháng 2 2016

\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^n}\)

\(\Rightarrow2S=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{n-1}}\)

\(\Rightarrow2S-S=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{n-1}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^n}\right)=2-\frac{1}{2^n}\)

\(\Rightarrow S=2-\frac{1}{2^n}>1,999=\frac{1999}{1000}\Rightarrow\frac{1}{2^n}>2-\frac{1999}{1000}=\frac{1}{1000}\Rightarrow\frac{1}{2^n}>\frac{1}{1000}\)

=>2n>1000

mà n là số nguyên dương nhỏ nhất=>n=10 (210=1024>1000)

vậy n=10

8 tháng 11 2018

\(Tacó\)

\(4n-3⋮n+1\Rightarrow4\left(n+1\right)⋮n+1\Rightarrow4n+4⋮n+1\)

\(\Rightarrow4n+4-\left(4n-3\right)⋮n+1\Rightarrow7⋮n+1\Rightarrow n+1\in\left\{\pm1;\pm7\right\}\)

\(\Rightarrow n\in\left\{-2;0;6;-8\right\}\)

b, \(K=\frac{2}{3+4n}\)

\(\Rightarrow GTLN\left(K\right)\Leftrightarrow n=0\Rightarrow\frac{2}{3+4n}=\frac{2}{3}\Rightarrow GTLN\left(K\right)=\frac{2}{3}\)