Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(ƯCLN\left(2n+1,3n+2\right)=d\left(d\varepsilonℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Leftrightarrow2\left(3n+2\right)-3\left(2n+1\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1\left(dod\varepsilonℕ^∗\right)}\)
Suy ra phần số \(\frac{2n+1}{3n+2}\)là phân số tối giản (đpcm)
gọi d là ước chung lớn nhất của 2n+1 và 3n+2
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}\)
nên (6n+4)-(6n+3)\(⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{-1,1\right\}\)
mà d là ước chung lớn nhất
Vậy phân số \(\frac{2n+1}{3n+2}\)tối giản
Gọi ƯCLN\(\left(2n+3;3n+7\right)=d\)
\(\Rightarrow\orbr{\begin{cases}2n+3⋮d\Rightarrow3.\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\\3n+7⋮d\Rightarrow2.\left(3n+7\right)⋮d\Rightarrow6n+14⋮d̸\end{cases}}\)
\(\Rightarrow\left(6n+14\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow5⋮d\Rightarrow d\in1;5\)
\(+d=5\Rightarrow6n+9⋮5\Rightarrow5n+\left(n+9\right)⋮5\)
\(\Rightarrow n+9⋮5\Rightarrow n+4⋮5\Rightarrow n=5k-4\)
Vậy n=5k-4 thì rút gọn đc
Vậy \(n\ne5k-4\Rightarrowđpcm\)
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
Xét : \(A=\frac{3n+7}{5-3n}=\frac{3n-5+12}{-\left(3n-5\right)}=\frac{3n-5}{-\left(3n-5\right)}+\frac{12}{-\left(3n-5\right)}\)
\(=-1+\frac{12}{5-3n}\)Vậy để A có giá trị nguyên thì \(5-3n\inƯ\left(12\right)\Rightarrow5-3n\in\left\{1;2;3;4;6;12;-1;-2;-3;-4;-6;-12\right\}\)
Bạn lập bảng ra sau đó tính các giá trị của n để phân số trên là phân số nguyên tức là phân số có thể rút gọn được
Gọi d = (5n + 3 ; 3n + 2) (d thuộc N)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(5n + 3 ; 3n + 2) = 1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N
hok tốt
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha