Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dùng BDT cô si chúa Pain có
\(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2y^2}}=\frac{2}{xy}\Rightarrow xy\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\ge2.\)
mà \(\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{2}\)
\(\Rightarrow\frac{xy}{2}\ge\Rightarrow xy\ge4\)
b)
áp dụng BDT cô si ta có
\(x+y\ge2\sqrt{xy}\)
lấy từ câu A ta có \(xy\ge4\) " câu a"
suy ra
\(x+y\ge2\sqrt{4}=4\)
Ta có:
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)
Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)
Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)
Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương
Đặt \(b-c=n^2;a-c=m^2\)
\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương
\(A=\left(1+\frac{x^2}{y^2}\right)\left(1+\frac{y^2}{x^2}\right)\ge2\sqrt{\frac{x^2}{y^2}}.2\sqrt{\frac{y^2}{x^2}}=2.\frac{x}{y}.2.\frac{y}{x}=4\) ( Cosi )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)
...
\(P=\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}\)
\(\ge3\sqrt[3]{\frac{1}{xyz\left(x+1\right)\left(y+1\right)\left(z+1\right)}}\)
Mà theo BĐT AM - GM ta có tiếp:
\(xyz\le\left(\frac{x+y+z}{3}\right)^3=1\)
\(\left(x+1\right)\left(y+1\right)\left(z+1\right)\le\left(\frac{x+y+z+3}{3}\right)^3=8\)
\(\Rightarrow P\le\frac{3}{2}\)
Đẳng thức xảy ra tại x=y=z=1
Vậy..................
1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)
(Bất đẳng thức này a;b > 0 mới dùng được)
\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\)
<=> \(\frac{y+x}{xy}=\frac{1}{2}\)
<=> \(2x+2y=xy\)
<=> \(2x-xy+2y=0\)
<=> \(x\left(2-y\right)+2y-4+4=0\)
<=> \(x\left(2-y\right)-2\left(2-y\right)=-4\)
<=>\(\left(x-2\right)\left(2-y\right)=-4\)
x;y duong nen ta co x-2 va 2-y la cac uoc cua -4
Từ \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\Leftrightarrow\frac{2x+2y}{2xy}=\frac{xy}{2xy}\Rightarrow2x+2y=xy\)
\(\Rightarrow2y-xy=-2x\)
\(\Rightarrow y\left(2-x\right)=-2x\)
\(\Rightarrow y=-\frac{2x}{2-x}\)
\(\Rightarrow y=\frac{2x}{x-2}\)
\(\Rightarrow y=\frac{2x-4+4}{x-2}\)
\(\Rightarrow y=\frac{2\left(x-2\right)+4}{x-2}\)
\(\Rightarrow y=2+\frac{4}{x-2}\)
Vì y là số nguyên dương nên \(2+\frac{4}{x-2}\) dương
\(\Rightarrow\frac{4}{x-2}\) dương \(\Rightarrow x-2\in\text{Ư}\left(4\right)=\left\{1;2;4\right\}\)
\(x-2=1=>x=3\left(tm\right)\)
\(x-2=2=>x=0\left(lo\text{ại}\right)\)
\(x-2=4=>x=6\left(tm\right)\)
* Với \(x=3\Rightarrow y=2+\frac{4}{3-2}=2+4=6\left(tm\right)\)
*Với \(x=6=>y=2+\frac{4}{6-2}=2+1=3\left(tm\right)\)
Vậy các cặp số nguyên dương \(\left(x;y\right)\) cần tìm là \(\left(3;6\right);\left(6;3\right)\)