K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TT
0
31 tháng 12 2015
a3 + 3a2 + 5 = 5b
=> a2(a + 3) + 5 = 5b
=> a2.5c + 5 = 5b (vì a + 3 = 5c)
=> a2.5c - 1 + 1 = 5b - 1 (chia cả 2 vế cho 5) (1)
=> c - 1 = 0 hoặc b - 1 = 0
+) b = 1, khi đó ko thoả mãn
+) c = 1 => a = 2 => b = 2
NH
0
PT
5
19 tháng 4 2016
5/a=1/6+b/3
5/a=1/6+2b/6
5/a=(1+2b)/6
a x (1+2b)=5x6=30
-->a và 1+2b thuộc ước của 30
Mà a và b là các số nguyên dương nên a và 1+2b thuộc tập hợp 1;2;3;5;6;10;15;30
Vì a và b là các số nguyên dương;a x (1+2b)=30 nên ta có bảng:
a | 1 | 2 | 3 | 5 | 6 | 10 | 15 | 30 |
1+2b | 30 | 15 | 10 | 6 | 5 | 3 | 2 | 1 |
b | không có giá trị của b | 7 | không có giá trị của b | không có giá trị của b | 2 | 1 | không có giá trị của b | 0 |
Kết luận | LOẠI | CHỌN | LOẠI | LOẠI | CHỌN | CHỌN | LOẠI | CHỌN |
Vậy a thuộc tập hợp 2;6;10;30
b thuộc tập hợp 7;2;1;0
LN
0
Giải:
Vì \(a\in Z^+\)
\(\Rightarrow5^b=a^3+3a^2+5>a+3=5^c\)
\(\Rightarrow5^b>5^c\Rightarrow b>c\)
\(\Rightarrow5^b⋮5^c\)
\(\Rightarrow a^3+3a^2+5⋮a+3\)
\(\Rightarrow a^2\left(a+3\right)+5⋮a+3\)
Mà \(a^2\left(a+3\right)⋮a+3\)
\(\Rightarrow5⋮a+3\)
\(\Rightarrow a+3\inƯ\left(5\right)\)
\(\Rightarrow a+3\in\left\{\pm1;\pm5\right\}\left(1\right)\)
Do \(a\in Z^+\Rightarrow a+3\ge4\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow a+3=5\)
\(\Rightarrow a=5-3\)
\(\Rightarrow a=2\)\((*)\)
Thay \((*)\) vào biểu thức ta có:
\(2^3+3.2^2+5=5^b\Leftrightarrow b=2\)
\(2+3=5^c\Leftrightarrow c=1\)
Vậy: \(\left\{\begin{matrix}a=2\\b=2\\c=1\end{matrix}\right.\)