K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2019

sao bn ko ra sớm hơn nhỉ

thầy toán mới ra bài này làm bài khó cuối cùng cho lớp mik

29 tháng 1 2019

Đặt phương trình trên là (1)

Ta thấy 120 và 18y đều chia hết cho 6. Nên \(11x⋮6\Leftrightarrow x⋮6\) (vì 11 và 6 là hai số nguyên tố cùng nhau)

Đặt \(x=6t\left(t\inℤ\right)\).Thay vào phương trình (1) được:

\(11.6t+6.3y=120\Leftrightarrow11t+3y=\frac{120}{6}=20\)

Suy ra \(3y=20-11t\Leftrightarrow y=\frac{20-11t}{3}\)

Vậy \(\hept{\begin{cases}x=6t\\y=\frac{20-11t}{3}\end{cases}}\) (t nguyên, sao cho \(20-11t⋮3\))

6 tháng 11 2019

Do \(18y;120\) đều chia hết cho 6. Nên \(11x⋮6\). Mà (11;6) = 1.

Do đó \(x⋮6\). Đặt x = 6k (k\(\in\mathbb{N}^{\text{*}}\))

PT \(\Leftrightarrow11.6k+3.6y=20.6\)

\(\Leftrightarrow11k+3y=20\Leftrightarrow y=\frac{20-11k}{3}\)

Rồi chị thử lí luận các kiểu tiếp xem sao? Em ko chắc đâu á!

11x+18y=120⇒x=120−18y11=121−1−22y+4y1111x+18y=120⇒x=120−18y11=121−1−22y+4y11⇔x=11−2y+4y−111⇔x=11−2y+4y−111

⎧⎨⎩4y−111=k11k=4y−1{4y−111=k11k=4y−1 ⇒y=11k+14=12k−k+14=3k−k−14⇒y=11k+14=12k−k+14=3k−k−14

⎧⎨⎩k−14=n4n=k−1{k−14=n4n=k−1 ⇒k=4n+1⇒k=4n+1

⇒{y=3.(4n+1)−n=11n+3x=11−2(11n+3)+4n+1=6−18n⇒{y=3.(4n+1)−n=11n+3x=11−2(11n+3)+4n+1=6−18n

x,y>0⇒{6−18n>011n+3>0x,y>0⇒{6−18n>011n+3>0 ⎧⎪ ⎪⎨⎪ ⎪⎩n<618n>−311{n<618n>−311 ⇒n={0}⇒n={0}

Nghiệm duy nhất của phương trình là:

{x=6y=3

17 tháng 11 2015

ta có 11x+7y=5

y=\(\frac{5-11x}{7}=1-x-\frac{2+4x}{7}\)

đặt \(\frac{2+4x}{7}=t\)

=>x=\(\frac{7t-2}{4}\)

thế x,y vào pt 11x+7y=5

roi giai ra 

tick nha

15 tháng 6 2017

\(\frac{11x}{5}-\sqrt{2x+1}=3y-\sqrt{4y-1}+2\)

\(\Leftrightarrow\sqrt{4y-1}-\sqrt{2x+1}=3y+2-\frac{11x}{5}\)

Vì 4y - 1 chia cho 4 có số dư là 2 nên \(\sqrt{4y-1}\)là số vô tỷ .

Ta có VP là số hữu tỉ. VT là số vô tỷ và \(\hept{\begin{cases}4y-1\\2x+1\end{cases}}\)là 2 số hữu tỷ nên.

\(\Rightarrow\sqrt{4y-1}-\sqrt{2x+1}=0\)

\(\Leftrightarrow x=2y-1\)

Thế lại phương trình ban đầu ta được.

\(\Rightarrow y=3\)

\(\Rightarrow x=5\)

Vậy nghiệm cần tìm là \(\hept{\begin{cases}x=5\\y=3\end{cases}}\) 

11x5 −√2x+1=3y−√4y−1+2

⇔√4y−1−√2x+1=3y+2−11x5 

Vì 4y - 1 chia cho 4 có số dư là 2 nên √4y−1là số vô tỷ .

Ta có VP là số hữu tỉ. VT là số vô tỷ và {

4y−1
2x+1

là 2 số hữu tỷ nên.

⇒√4y−1−√2x+1=0

⇔x=2y−1

Thế lại phương trình ban đầu ta được.

⇒y=3

⇒x=5

Vậy nghiệm cần tìm là {

x=5
y=3
8 tháng 7 2017

Phương trình 2 x 2 − 11x + 3 = 0 3 = 97 > 0 nên phương trình có hai nghiệm x 1 ;   x 2

Theo hệ thức Vi-ét ta có  x 1 + x 2 = − b a x 1 . x 2 = c a ⇔ x 1 + x 2 = 11 2 x 1 . x 2 = 3 2

Ta có

A = x 1 2   + x 2 2 = x 1 + x 2 2 - 2 x 1 x 2 1 + x 2 ) = 11 2 2 − 2. 3 2 = 109 4

Đáp án: A

13 tháng 1 2023

\(x^2-11x+m-2=0\left(1\right)\)

Để phương trình (1) có 2 nghiệm phân biệt thì:

\(\Delta>0\Rightarrow\left(-11\right)^2-4.1.\left(m-2\right)>0\)

\(\Leftrightarrow121-4m+8>0\)

\(\Leftrightarrow m< \dfrac{129}{4}\)

Theo hệ thức Vi-et ta có:

\(\left\{{}\begin{matrix}x_1+x_2=11\left(1'\right)\\x_1x_2=m-2\end{matrix}\right.\).

Ta có: \(\sqrt{x^2_1-10x_1+m-1}=5-\sqrt{x_2+1}\left(2\right)\)

Đk: \(\left\{{}\begin{matrix}x_1^2-10x_1+m-1\ge0\\-1\le x_2\le24\end{matrix}\right.\)

\(\left(2\right)\Rightarrow x^2_1-10x_1+m-1=25-10\sqrt{x_2+1}+x_2+1\)

\(\Leftrightarrow x_1^2-10x_1+\left(m-2\right)-25+10\sqrt{11-x_1+1}-x_2=0\)

\(\Rightarrow x_1^2-\left(x_1+x_2\right)-9x_1+x_1x_2-25+10\sqrt{12-x_1}=0\)

\(\Rightarrow x_1\left(x_1+x_2\right)-11-9x_1-25+10\sqrt{12-x_1}=0\)

\(\Rightarrow11x_1-9x_1-36+10\sqrt{12-x_1}=0\)

\(\Leftrightarrow2x_1+10\sqrt{12-x_1}-36=0\)

\(\Leftrightarrow x_1+5\sqrt{12-x_1}-18=0\)

\(\Leftrightarrow18-x_1=5\sqrt{12-x_1}\left(x_1\le12\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}18-x_1\ge0\\\left(18-x_1\right)^2=25\left(12-x_1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}18-x_1\ge0\\324-36x_1+x_1^2=300-25x_1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1\le18\\x_1^2-11x_1+24=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1\le18\\\left[{}\begin{matrix}x=3\\x=8\end{matrix}\right.\left(nhận\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=3\\x_1=8\end{matrix}\right.\left(nhận\right)\)

Thay \(x_1=3\) vào (1') ta được:

\(3+x_2=11\Rightarrow x_2=8\left(nhận\right)\)

\(\Rightarrow m=x_1x_2+2=3.8+2=26\left(thỏa\Delta>0\right)\)

Thay \(x_1=8\) vào (1') ta được:'

\(8+x_2=11\Rightarrow x_2=3\left(nhận\right)\)

\(\Rightarrow m=x_1x_2+2=8.3+2=26\left(thỏa\Delta>0\right)\)

Vậy giá trị m cần tìm là 26.