Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(lim\dfrac{5n\sqrt{2n^2-n}}{1+5n-3n^2}=lim\dfrac{5\sqrt{2-\dfrac{1}{n}}}{\dfrac{1}{n^2}+\dfrac{5}{n}-3}=\dfrac{5\sqrt{2-0}}{0+0-3}=\dfrac{-5\sqrt{2}}{3}\)
\(lim\dfrac{\sqrt{4n^2+n}-7n}{3n^2-1}=lim\dfrac{\sqrt{\dfrac{4}{n^2}+\dfrac{1}{n^3}}-\dfrac{7}{n}}{3-\dfrac{1}{n^2}}=\dfrac{\sqrt{0+0}-0}{3-0}=\dfrac{0}{3}=0\)
a) Cả tử số và mẫu số của \(\frac{7n^2-3n+12}{n^2+2n+2}\) đều dẫn đến \(\infty\) nên không thể trả lời ngay biểu thức đó tiến đến giới hạn nào (dạng vô định \(\left(\frac{\infty}{\infty}\right)\)). Tuy nhiên sau khi chia cả tử số và mẫu số cho \(n^2\) :
\(\frac{7n^2-3n+12}{n^2+2n+2}=\frac{7-\frac{3}{n}+\frac{12}{n^2}}{1+\frac{2}{n}+\frac{2}{n^2}}\)
Ta thấy ngay tử số gần đến 7 và mẫu số gần đến 1 (vì \(\lim\limits\frac{1}{n^p}=0,p\ge1\)
Điều đó cho phép ta áp dụng công thức và thu được kết quả \(\lim\limits\frac{7n^2-3n+12}{n^2+2n+2}=\lim\limits\frac{7-\frac{3}{n}+\frac{12}{n^2}}{1+\frac{2}{n}+\frac{2}{n^2}}=7\)
b) Áp dụng công thức "Nếu tồn tại \(\lim\limits a^n,k\in\)N* thì tồn tại \(\lim\limits\left(a_n\right)^k=\left(\lim\limits a_n\right)^k\)"
ta có :
\(\lim\limits a_n=\left[\lim\limits\left(\frac{3n^2+n-2}{4n^2+2n+7}\right)\right]^3\)
Mặt khác do \(\lim\limits\frac{3n^2+n-2}{4n^2+2n+7}=\lim\limits\frac{3+\frac{1}{n}-\frac{2}{n^2}}{4+\frac{2}{n}+\frac{7}{n^2}}=\frac{3}{4}\)
nên \(\lim\limits a_n=\left(\frac{3}{4}\right)^3=\frac{27}{64}\)
\(lim\left(5n-\sqrt{25n^2-3n+5}\right)=lim\dfrac{25n^2-25n^2+3n-5}{5n+\sqrt{25n^2-3n+5}}\)
\(=lim\dfrac{3n-5}{5n+\sqrt{25n^2-3n+5}}=lim\dfrac{3-\dfrac{5}{n}}{5+\sqrt{25-\dfrac{3}{n}+\dfrac{5}{n^2}}}=\dfrac{3-0}{5+\sqrt{25-0+0}}=\dfrac{3}{10}\)
\(lim\dfrac{4n^5-3n^4-2n^3+7n-9}{-5n\left(3n^2-3n+1\right)\left(5-2n^2\right)}=lim\dfrac{\dfrac{4n^5-3n^4-2n^3+7n-9}{n^5}}{\dfrac{-5n}{n}\dfrac{\left(3n^2-3n+1\right)}{n^2}\dfrac{\left(5-2n^2\right)}{n^2}}\)
\(=lim\dfrac{4-\dfrac{3}{n}-\dfrac{2}{n^2}+\dfrac{7}{n^4}-\dfrac{9}{n^5}}{-5.\left(3-\dfrac{2}{n}+\dfrac{1}{n^2}\right).\left(\dfrac{5}{n^2}-2\right)}=\dfrac{4-0-0+0-0}{-5\left(3-0+0\right).\left(0-2\right)}=\dfrac{2}{15}\)
\(a=lim\frac{n^2+n}{6n^3}=lim\frac{\frac{1}{n}+\frac{1}{n^3}}{6}=\frac{0}{6}=0\)
\(b=lim\frac{1+\frac{2}{n}}{1+\frac{1}{n}}+lim\frac{sinn}{2^n}=1+0=1\)
Giải thích: \(-1\le sin\left(n\right)\le1\) \(\forall n\Rightarrow\frac{-1}{2^n}\le\frac{sin\left(n\right)}{2^n}\le\frac{1}{2^n}\)
Mà \(lim\frac{-1}{2^n}=lim\frac{1}{2^n}=0\Rightarrow lim\frac{sin\left(n\right)}{2^n}=0\) theo nguyên tắc giới hạn kẹp
\(c=lim\frac{-3n-1}{\sqrt{n^2-3n}+\sqrt{n^2+1}}=lim\frac{-3-\frac{1}{n}}{\sqrt{1-\frac{3}{n}}+\sqrt{1+\frac{1}{n^2}}}=\frac{-3}{1+1}=-\frac{3}{2}\)
\(d=lim\frac{3n^2}{\sqrt[3]{\left(n^3+3n^2\right)^2}+n\sqrt[3]{n^3+3n^2}+n^2}=lim\frac{3}{\sqrt[3]{\left(1+\frac{3}{n}\right)^2}+\sqrt[3]{1+\frac{3}{n}}+1}=\frac{3}{1+1+1}=1\)
1.
\(\lim \frac{3n^2+5n+4}{2-n^2}=\lim \frac{\frac{3n^2+5n+4}{n^2}}{\frac{2-n^2}{n^2}}=\lim \frac{3+\frac{5}{n}+\frac{4}{n^2}}{\frac{2}{n^2}-1}=\frac{3}{-1}=-3\)
2.
\(\lim \frac{2n^3-4n^2+3n+7}{n^3-7n+5}=\lim \frac{\frac{2n^3-4n^2+3n+7}{n^3}}{\frac{n^3-7n+5}{n^3}}=\lim \frac{2-\frac{4}{n}+\frac{3}{n^2}+\frac{7}{n^3}}{1-\frac{7}{n^2}+\frac{5}{n^3}}=\frac{2}{1}=2\)
3.
\(\lim (\frac{2n^3}{2n^2+3}+\frac{1-5n^2}{5n+1})=\lim (n-\frac{3n}{2n^2+3}+\frac{1}{5}-n-\frac{1}{5n+1})\)
\(=\frac{1}{5}-\lim (\frac{3n}{2n^2+3}+\frac{1}{5n+1})=\frac{1}{5}-\lim (\frac{3}{2n+\frac{3}{n}}+\frac{1}{5n+1})=\frac{1}{5}-0=\frac{1}{5}\)
4.
\(\lim \frac{1+3^n}{4+3^n}=\lim (1-\frac{3}{4+3^n})=1-\lim \frac{3}{4+3^n}=1-0=1\)
5.
\(\lim \frac{4.3^n+7^{n+1}}{2.5^n+7^n}=\lim \frac{\frac{4.3^n+7^{n+1}}{7^n}}{\frac{2.5^n+7^n}{7^n}}\)
\(=\lim \frac{4.(\frac{3}{7})^n+7}{2.(\frac{5}{7})^n+1}=\frac{7}{1}=7\)
\(=lim\frac{3+\frac{2}{n}+\frac{5}{n^2}}{7+\frac{1}{n}-\frac{8}{n^2}}=\frac{3}{7}\)
\(=lim-3n^3\left(1-\frac{5}{3n^2}+\frac{2}{3n^3}\right)=-\infty\)
\(=lim\frac{\left(\frac{3}{7}\right)^n+4}{3-2.\left(\frac{1}{7}\right)^n}=\frac{4}{3}\)
Câu này đề thiếu, giới hạn của x nên nó là giới hạn của hàm chứ ko phải giới hạn của dãy, mà giới hạn của hàm thì cần chỉ rõ x tiến tới bao nhiêu mới tính được
\(=lim\frac{\left(\frac{1}{3}\right)^n-1}{\left(\frac{2}{3}\right)^n+4}=-\frac{1}{4}\)
a/ \(=lim\frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\infty}=0\)
b/ \(=lim\frac{6n+1}{\sqrt{n^2+5n+1}+\sqrt{n^2-n}}=\frac{6+\frac{1}{n}}{\sqrt{1+\frac{5}{n}+\frac{1}{n^2}}+\sqrt{1-\frac{1}{n}}}=\frac{6}{1+1}=3\)
c/ \(=lim\frac{6n-9}{\sqrt{3n^2+2n-1}+\sqrt{3n^2-4n+8}}=lim\frac{6-\frac{9}{n}}{\sqrt{3+\frac{2}{n}-\frac{1}{n^2}}+\sqrt{3-\frac{4}{n}+\frac{8}{n^2}}}=\frac{6}{\sqrt{3}+\sqrt{3}}=\sqrt{3}\)
d/ \(=lim\frac{\left(\frac{2}{6}\right)^n+1-4\left(\frac{4}{6}\right)^n}{\left(\frac{3}{6}\right)^n+6}=\frac{1}{6}\)
e/ \(=lim\frac{\left(\frac{3}{5}\right)^n-\left(\frac{4}{5}\right)^n+1}{\left(\frac{3}{5}\right)^n+\left(\frac{4}{5}\right)^n-1}=\frac{1}{-1}=-1\)
f/ Ta có công thức:
\(1+3+...+\left(2n+1\right)^2=\left(n+1\right)^2\)
\(\Rightarrow lim\frac{1+3+...+2n+1}{3n^2+4}=lim\frac{\left(n+1\right)^2}{3n^2+4}=lim\frac{\left(1+\frac{1}{n}\right)^2}{3+\frac{4}{n^2}}=\frac{1}{3}\)
g/ \(=lim\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\right)=lim\left(1-\frac{1}{n+1}\right)=1-0=1\)
h/ Ta có: \(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
\(\Rightarrow lim\frac{n\left(n+1\right)\left(2n+1\right)}{6n\left(n+1\right)\left(n+2\right)}=lim\frac{2n+1}{6n+12}=lim\frac{2+\frac{1}{n}}{6+\frac{12}{n}}=\frac{2}{6}=\frac{1}{3}\)
\(b,lim\dfrac{2n^2+1}{3n^3-3n+3}\)
\(=lim\dfrac{2n+\dfrac{1}{n^3}}{3-\dfrac{3}{n^2}+\dfrac{3}{n^3}}\)
\(=n\times\dfrac{2}{3}=\)+∞
A, 7.b dương vô cực