K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2016

\(\left(x^3+y^3\right)\left(x+y\right)=xy\left(1-x\right)\left(1-y\right)\Leftrightarrow\left(\frac{x^2}{y}+\frac{y^2}{x}\right)\left(x+y\right)=\left(1-x\right)\left(1-y\right)\left(1\right)\)

Ta có : \(\left(\frac{x^2}{y}+\frac{y^2}{x}\right)\left(x+y\right)\ge4xy\)

và \(\left(1-x\right)\left(1-y\right)=1-\left(x+y\right)+xy\le1-2\sqrt{xy}+xy\)

\(\Rightarrow1-2\sqrt{xy}+xy\ge4xy\Leftrightarrow0\) <\(xy\le\frac{1}{9}\)

Dễ chứng minh : \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\le\frac{1}{1+xy};\left(x,y\in\left(0;1\right)\right)\)

\(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}\le\sqrt{2\left(\frac{1}{1+x^2}+\frac{1}{1+y^2}\right)}\le\sqrt{2\left(\frac{2}{1+xy}\right)}=\frac{2}{\sqrt{1+xy}}\)

\(3xy-\left(x^2+y^2\right)=xy-\left(x-y\right)^2\le xy\)

\(\Rightarrow P\le\frac{2}{\sqrt{1+xy}}+xy=\frac{2}{\sqrt{1+t}}+t\)\(\left(t=xy\right)\), (0<\(t\le\frac{1}{9}\)

Xét hàm số :

\(f\left(t\right)=\frac{2}{\sqrt{t+1}}+t\) ,  (0<\(t\le\frac{1}{9}\)

Ta có Max \(f\left(t\right)=f\left(\frac{1}{9}\right)=\frac{6\sqrt{10}}{10}+\frac{1}{9}\)\(t\in\left(0;\frac{1}{9}\right)\)
AH
Akai Haruma
Giáo viên
9 tháng 1 2017

Lời giải:

Áp dụng BĐT AM-GM cho hai số $x,y$ dương ta có \(xy\leq \left(\frac{x+y}{2}\right)^2\Rightarrow \frac{4xy}{(x+y)^2}\leq 1\)

\(\Rightarrow P\leq \frac{4z}{x+y}+\frac{z^2}{(x+y)^2}+1\). Đến đây đặt \(\frac{z}{x+y}=t\). Vì \(x,y,z\in[1;2]\Rightarrow t\in[\frac{1}{4};1]\).

Khi đó \(P\leq t^2+4t+1\leq 1+4+1=6\)

Vậy $P_{max}=6$. Dấu $=$ xảy ra khi \(x=y=1;z=2\)

AH
Akai Haruma
Giáo viên
25 tháng 2 2019

Lời giải:

Từ \(x+y-z=-1\Rightarrow z-x-y=1\)

Ta có các biến đổi sau:

\(x+yz=x(z-x-y)+yz=x(z-x)+y(z-x)=(x+y)(z-x)\)

\(=(x+y)(y+1)\)

\(y+zx=y(z-x-y)+zx=y(z-y)+x(z-y)=(y+x)(z-y)\)

\(=(y+x)(x+1)\)

\(z+xy=z(z-x-y)+xy=(z-x)(z-y)=(x+1)(y+1)\)

Khi đó:\(P=\frac{x^3y^3}{(x+y)^2(x+1)^3(y+1)^3}(*)\)

Áp dụng BĐT Cauchy:

\((x+y)^2\geq 4xy\)

\(x+1=\frac{x}{2}+\frac{x}{2}+1\geq 3\sqrt[3]{\frac{x^2}{4}}\Rightarrow (x+1)^3\geq \frac{27x^2}{4}\)

\(y+1\geq 3\sqrt[3]{\frac{y^2}{4}}\Rightarrow (y+1)^3\geq \frac{27y^2}{4}\) (tương tự ở trên)

\(\Rightarrow (x+y)^2(x+1)^3(y+1)^3\geq \frac{729}{4}x^3y^3(**)\)

Từ \((*); (**)\Rightarrow P\leq \frac{x^3y^3}{\frac{729}{4}x^3y^3}=\frac{4}{279}\Rightarrow P_{\max}=\frac{4}{729}\)

Đẳng thức xảy ra khi \(x=y=2; z=5\)

NV
8 tháng 4 2022

\(\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\le\dfrac{xyz}{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}=\dfrac{1}{8}\)

Dấu "=" xảy ra khi \(x=y=z\)