Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để biểu thức \(\frac{7}{x^2-x+1}\)nguyên thì \(x^2-x+1\)phải là ước của 7
<=> \(x^2-x+1\)\(\in\){\(\pm1\); \(\pm7\)}
TH1: \(x^2-x+1=1\)
<=>\(x^2-x=0\)
<=>\(x\left(x-1\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
TH2:\(x^2-x+1=-1\)
<=>\(x^2-x+2=0\)(Vô nghiệm)
TH3:\(x^2-x+1=7\)
<=>\(x^2-x-6=0\)
<=>\(\left(x-3\right)\left(x+2\right)=0\)
<=>\(\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
TH4: \(x^2-x+1=-7\)
<=>\(x^2-x+8=0\)(Vô nghiệm)
Vậy các giá trị nguyên của biểu thức \(\frac{7}{x^2-x+1}\)là 1 và 7 khi và chỉ khi \(x\in\){-2;0;1;3}
a, ĐKXĐ: x\(\ne\) 1;-1;2
b, A= \(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)
=\(\left(\frac{2x^2-2x}{2\left(x+1\right)\left(x-1\right)}+\frac{2x+2}{2\left(x+1\right)\left(x-1\right)}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-2}{x+1}\)
=\(\frac{2x^2-2x+2x+2+4x}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{2x^2+4x+2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{2\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{x-2}{x-1}\)
c, Khi x= -1
→A= \(\frac{-1-2}{-1-1}\)
= -3
Vậy khi x= -1 thì A= -3
Câu d thì mình đang suy nghĩ nhé, mình sẽ quay lại trả lời sau ^^
a,ĐKXĐ:x#1; x#-1; x#2
b,Ta có:
A=\(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)
=\(\left(\frac{x\left(x-1\right)2}{\left(x+1\right)\left(x-1\right)2}+\frac{\left(x+1\right)2}{\left(x-1\right)\left(x+1\right)2}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right):\frac{x+1}{x-2}\)
=\(\frac{2x^2-2x+2x+2+4x}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{2x^2+4x+2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{2\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{x-2}{x+1}\)
c,Tại x=-1 ,theo ĐKXĐ x#-1 \(\Rightarrow\)A không có kết quả
d,Để A có giá trị nguyên \(\Rightarrow\frac{x-2}{x+1}\)có giá trị nguyên
\(\Leftrightarrow x-2⋮x+1\)
\(\Leftrightarrow x+1-3⋮x+1\)
Mà \(x+1⋮x+1\Rightarrow3⋮x+1\)
\(\Rightarrow x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{0;-2;2;-4\right\}\)
Mà theo ĐKXĐ x#2\(\Rightarrow x\in\left\{0;-2;-4\right\}\)
Vậy \(x\in\left\{0;-2;-4\right\}\)thì a là số nguyên
Ta có \(A=[\frac{2}{\left(x+1\right)^3}\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\left(\frac{1}{x^2}+1\right)]:\frac{x-1}{x^3}\)
\(\Leftrightarrow A=\left[\frac{2}{\left(x+1\right)^3}.\frac{x+1}{x}+\frac{1}{\left(x+1\right)^2}.\frac{x^2+1}{x^2}\right].\frac{x^3}{x-1}\)
\(\Leftrightarrow A=\left[\frac{2x+x^2+1}{x^2\left(x+1\right)^2}\right].\frac{x^3}{x+1}=\frac{x}{x+1}\)
Để \(A=\frac{x}{x+1}< 1\Leftrightarrow\frac{1}{x+1}>0\Leftrightarrow x>-1\)
Để \(A=1-\frac{1}{x+1}\text{ nguyên thì }\frac{1}{x+1}\text{ nguyên hay }x\in\left\{-2,0\right\} \)
câu a, phân tích từng mẫu thành nhân tử (nếu cần)
rồi tìm mtc, ở đây, nhân chia cũng như cộng trừ, nên phân tích hết rồi ra mtc, đkxđ là cái mtc ấy khác 0
câu b với c tự làm
câu d thì lấy cái rút gọn rồi của câu b, rồi giải ra, để nguyên thì mẫu là ước của tử, thế thôi
a) \(ĐKXĐ:x\ne-3;x\ne2\)
b) \(P=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)
\(P=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)
\(P=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)
\(P=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)
vậy \(P=\frac{x-4}{x-2}\)
\(P=\frac{-3}{4}\) \(\Leftrightarrow\frac{x-4}{x-2}=\frac{-3}{4}\)
\(\Leftrightarrow4\left(x-4\right)=-3.\left(x-2\right)\)
\(\Leftrightarrow4x-16=-3x+6\)
\(\Leftrightarrow7x=22\)
\(\Leftrightarrow x=\frac{22}{7}\)
c) \(P\in Z\Leftrightarrow\frac{x-4}{x-2}\in Z\)
\(\frac{x-2-6}{x-2}=1-\frac{6}{x-2}\in Z\)
mà \(1\in Z\Rightarrow\left(x-2\right)\inƯ\left(6\right)\in\left(\pm1;\pm2;\pm3;\pm6\right)\)
mà theo ĐKXĐ: \(\Rightarrow\in\left(\pm1;-2;3;\pm6\right)\)
thay mấy cái kia vào rồi tìm \(x\)
d) \(x^2-9=0\Rightarrow x^2=9\Rightarrow x=\pm3\)
khi \(x=3\Rightarrow P=\frac{3-4}{3-2}=-1\)
khi \(x=-3\Rightarrow P=\frac{-3-4}{-3-2}=\frac{-7}{-5}=\frac{7}{5}\)
Vì để 7/ (x^2-x+1) nguyên thì x^2-x+1 thuộc ước của 7 nên ta có
Vậy phương trình có tập nghiệm s={3;0;-2}
nhớ k nha
vì sao mà tính dc x^2-x+1=7 mà ra x=3:-2 dc