K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2018

Đặt \(A=\frac{2x^3+x^2+2x+2}{2x+1}=\frac{x^2\left(2x+1\right)+\left(2x+1\right)+1}{2x+1}=x^2+1+\frac{1}{2x+1}\)

Để \(A\in Z\Leftrightarrow2x+1\inƯ\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow2x\in\left\{0;-2\right\}\Rightarrow x\in\left\{0;-1\right\}\)

Vậy...

30 tháng 8 2021

\(\dfrac{2x^3+x^2+2x+2}{2x+1}\left(đk:x\ne-\dfrac{1}{2}\right)=\dfrac{\left(2x+1\right)\left(x^2+1\right)}{2x+1}+\dfrac{1}{2x+1}=x^2+1+\dfrac{1}{2x+1}\)

Do x nguyên nên để biểu thức trên có giá trị nguyên thì :

\(1⋮2x+1\Rightarrow2x+1\inƯ\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow x\in\left\{0;-1\right\}\)

\(\dfrac{2x^3+x^2+2x+2}{2x+1}\)

\(=\dfrac{2x^3+x^2+2x+1+1}{2x+1}\)

\(=x^2+1+\dfrac{1}{2x+1}\)

Để đó là số nguyên thì \(1⋮2x+1\)

\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow2x\in\left\{0;-2\right\}\)

hay \(x\in\left\{0;-1\right\}\)

a: ĐKXĐ: x<>-1

b: \(P=\left(1-\dfrac{x+1}{x^2-x+1}\right)\cdot\dfrac{x^2-x+1}{x+1}\)

\(=\dfrac{x^2-x+1-x-1}{x^2-x+1}\cdot\dfrac{x^2-x+1}{x+1}=\dfrac{x^2-2x}{x+1}\)

c: P=2

=>x^2-2x=2x+2

=>x^2-4x-2=0

=>\(x=2\pm\sqrt{6}\)

26 tháng 12 2021

a: ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2};\dfrac{1}{2};-2\right\}\)

b: \(B=\dfrac{4x^2+4x+1-4-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{2x+1}{x+2}\)

\(=\dfrac{8x-4}{2x-1}\cdot\dfrac{1}{x+2}=\dfrac{4}{x+2}\)

a: Để A là số nguyên thì

x^3-2x^2+4 chia hết cho x-2

=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(x\in\left\{3;1;4;0;6;-2\right\}\)

b: Để B là số nguyên thì

\(3x^3-x^2-6x^2+2x+9x-3+2⋮3x-1\)

=>\(3x-1\in\left\{1;-1;2;-2\right\}\)

=>\(x\in\left\{\dfrac{2}{3};0;1;-\dfrac{1}{3}\right\}\)

 

12 tháng 12 2021
. Dạng 1: Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên

+ Thông thường biểu thức A sẽ có dạng A = \frac{{f\left( x \right)}}{{g\left( x \right)}} trong đó f(x) và g(x) là các đa thức và g(x) ≠ 0

+ Cách làm:

- Bước 1: Tách về dạng A = m\left( x \right) + \frac{k}{{g\left( x \right)}} trong đó m(x) là một biểu thức nguyên khi x nguyên và k có giá trị là số nguyên

- Bước 2: Để A nhận giá trị nguyên thì \frac{k}{{g\left( x \right)}}nguyên hay k \vdots g\left( x \right) nghĩa là g(x) thuộc tập ước của k

- Bước 3: Lập bảng để tính các giá trị của x

- Bước 4: Kết hợp với điều kiện đề bài, loại bỏ những giá trị không phù hợp, sau đó kết luận bài toán

2. Dạng 2: Tìm giá trị của x để biểu thức A nhận giá trị nguyên

+ Đây là một dạng nâng cao hơn của dạng bài tập tìm gá trị nguyên của x để biểu thức A nhận giá trị nguyên bởi ta chưa xác định giá trị của biến x có nguyên hay không để biến đổi biểu thức A về dạng A = m\left( x \right) + \frac{k}{{g\left( x \right)}}. Bởi vậy, để làm được dạng bài tập này, chúng ta sẽ thực hiện các bước sau:

12 tháng 12 2021

\(Q=\dfrac{x+3-x+7}{2x+1}=\dfrac{10}{2x+1}\in Z\\ \Leftrightarrow2x+1\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\\ \Leftrightarrow x\in\left\{-3;-1;0;2\right\}\left(x\in Z\right)\)

22 tháng 12 2022

loading...