K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2017

3x+2\(⋮\)x-1

<=> 3x - 3 + 5 \(⋮\)x - 1

Vì 3x - 3 \(⋮\)x - 1 mà  3x - 3 + 5 \(⋮\)x - 1 nên:

=> 5 \(⋮\)x - 1

x - 1 \(\in\){ -5;-1;1;5}

=> x \(\in\){ -4;0;2;6}

Vậy x = { -4;0;2;6}

19 tháng 1 2020

a) Ta có: A = |x + 1| + |x - 2009|

=> A = |x + 1| + |2009 - x| \(\ge\)|x + 1 + 2009 - x| = |2010| = 2010

Dấu "=" xảy ra <=> (x + 1)(2009 - x) \(\ge\)0

<=> \(-1\le x\le2009\)

Vậy MinA = 2010 khi \(-1\le x\le2009\)

b) Ta có: 2n - 1 = 2(n - 4) + 7

Do 2(n - 4) \(⋮\)n - 4 => 7 \(⋮\)n - 4

=> n - 4 \(\in\)Ư(7) = {1; -1; 7; -7}

Lập bảng:

 n - 4 1 -1 7 -7
   n 5 3 11 -3

Vậy ....

19 tháng 1 2020

a) Ta có A  = |x + 1| + |x - 2009|

              = |x + 1| + |2009 - x| \(\ge\left|x+1+2009-x\right|=2010\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1\ge0\\2009-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le2009\end{cases}\Rightarrow1\le x\le2009}\)

b) Để 2n - 1 \(⋮\)n - 4

=> 2n - 8 + 7  \(⋮\)n - 4

=> 2(n - 4) + 7  \(⋮\)n - 4

Vì 2(n - 4)  \(⋮\)n - 4

=> 7  \(⋮\)n - 4

=> \(n-4\inƯ\left(7\right)\Rightarrow n-4\in\left\{\pm1;\pm7\right\}\)

Lập bảng xét các trường hợp : 

n - 41-17-7
n5311-3

Vậy \(n\in\left\{-3;3;5;11\right\}\)

\(A=\frac{3x+2}{x-3}=\frac{3\left(x-3\right)+11}{x-3}=\frac{3\left(x-3\right)}{x-3}+\frac{11}{x-3}=3+\frac{11}{x-3}\left(ĐK:x\ne3\right)\)

Để A nguyên thì \(11⋮x-3\)hay \(x-3\inƯ\left(11\right)\)

Ư(11)x - 3x
114
-1-12
111114
-11-11-8

Vậy để A nguyên \(x\in\left\{4;2;14;-8\right\}\)

Theo đề bài, ta có: \(3x-4⋮x-1\)

\(\Rightarrow3\left(x-1\right)-1⋮x-1\)

\(\Rightarrow-1⋮x-1\)

Vì \(x\in Z\Rightarrow x-1\inƯ\left(-1\right)=\left\{\mp1\right\}\)

Ta có các trường hợp sau:

\(\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)

Vậy \(x\in\left\{2;0\right\}\)

20 tháng 2 2020

3x - 4 \(⋮\) x - 1

\(\Rightarrow3\left(x-1\right)-1⋮x-1\)

\(\Rightarrow1⋮x-1\)

\(\Rightarrow x-1\inƯ\left(1\right)=\left\{-1;1\right\}\)

\(\Rightarrow x\in\left\{0;2\right\}\)

Vậy \(x\in\left\{0;2\right\}\)

@@ Học tốt

x^3+3x-5 chia hết cho x^2+2

=>x^3+2x+x-5 chia hết cho x^2+2

=>x-5 chia hết cho x^2+2

=>x^2-25 chia hết cho x^2+2

=>x^2+2-27 chia hết cho x^2+2

=>x^2+2 thuộc Ư(-27)

=>x^2+2 thuộc {3;9;27}

=>\(x\in\left\{1;-1;5;-5\right\}\)

11 tháng 4 2017

Bài 1:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

hay \(\frac{a}{b}=\frac{a+b+c}{b+c+d}\)

\(\frac{b}{c}=\frac{a+b+c}{b+c+d}\)

\(\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

Nhân vế theo vế của 3 đẳng thức trên ta có:

\(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

mà \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\left(đpcm\right)\)

11 tháng 4 2017

Bài 2: Không làm được, thông cảm. Gợi ý: Áp dụng chia tỉ lệ

21 tháng 7 2017

a) Ta có : x - 4 chia hết cho x + 1

=> x + 1 - 5 chia hết cho x + 1

=> 5 chia hết cho x + 1

=> x + 1 thuộc Ư(5) = {-5;-1;1;5}

=> x = {-6;-2;0;4}

b) 3x - 1 chia hết cho x - 4

=> 3x - 12 + 11 chia hết cho x - 4

=> 3(x - 4) + 11 chia hết cho x - 4

=> 11 chia hết cho x - 4

=> x - 4 thuộc Ư(11) = {-11;-1;1;11}

=> x = {-7;3;5;15}

21 tháng 7 2017

a,x-4 chia hết cho x+1

\(\Rightarrow\)x-(1+3) chia hết cho x+1

Mà x+1 chia hết cho x+1 nên 3 chia hết cho x+1

\(\Rightarrow\)x thuộc Ư(3)={1;3}

\(\Rightarrow\)x thuộc {0;2}

11 tháng 9 2018

trong đề y đâu ra?

11 tháng 9 2018

À nhầm tìm x